State of California Department of Public Works Division of Highways MATERIALS AND RESEARCH DEPARTMENT Sacramento, California January, 1957 Mr. G. T. McCoy State Highway Engineer California Division of Highways Sacramento, California Dear Sir: Submitted for your consideration is: A report on CO-OPERATIVE TESTS OF PORTLAND CEMENT SERIES OF 1956 #### FINAL REPORT Study made by Technical Section Under general direction of Bailey Tremper Report written by W. E. Haskell Yours very truly F. N. Hveem Materials & Research Engineer Dr. Botts: This is your copy of our report on the co-op. Our lab is "C" coce letter ### CO-OPERATIVE TESTS OF PORTLAND CEMENT SERIES OF 1956 #### FOREWORD A decision to initiate a co-operative series of tests of portland cement with the producers in California resulted from past experience which demonstrated that agreement was not always attained between our laboratory and the producer's laboratory as to the acceptability under the specifications of occasional shipments of cement. While such occasions have been relatively infrequent, they have served to raise questions as to reasons for such discrepancies and the allowance that should be made for the experimental errors that are inherent in any method of test. ASTM Methods for Chemical Analysis of Portland Cement set forth the "Maximum Permissible Variations in Results" between two results or three results. Presumably these criteria apply to repetitions of determinations in a single laboratory but not to reproducibility between laboratories. No similar statements of permissible variation are given in the various ASTM physical test methods. Thus the ASTM methods provide insufficient guidance as to the normal expectation of variability in test results. These co-operative tests, then, were planned to develop information on the variability of results. Tests were performed on three cements by the laboratories of cement producing mills in California and the Division of Highways. The test results were compiled and analyzed for precision by methods of statistical analysis. It is significant that no single laboratory was able to complete its portion of the test program without obtaining a substantial number of results that were "out-of-control" and which required elimination in the computations of valid statistical measures or precision. After out-of-control results were eliminated it was possible to compute values of repeatability within a single laboratory and reproducibility between laboratories. Such computations were made for those tests, which in the light of past experience, appear to be the most critical with respect both to reproducibility and the ability of manufacturers to meet specification requirements. The tests that may be considered to be the most critical in these respects are: Alkalies Autoclave Expansion Strength The results of the program bring out certain deficiencies in its planning and thus point the way to methods of obtaining more significant data with less effort in any future program. #### CONTENTS # Final Report of Co-operative Tests of Portland Cement Series of 1956 | | Page | |---|--------| | Introduction | | | Participants in Co-operative Series | 1 | | Preparation of Cement Samples | 2 | | Results of Tests | 3 | | Statistical Methods Used in the Analysis of the Experimental Data | | | Control Limits for Averages (\overline{X}) and Ranges (R) Statistical Measures of Precision | 4
4 | | Statistical Measure of Repeatability and Repro- | 5 | | ducibility
Statistical Analysis of Variance | 5
7 | | Tests for: Air Content of Hydraulic Cement Mortar (Tentative) ASTM Designation: C185-55T | | | Air Content of Portland Cement | 57 | | Table XI Air Content ASTM Designation: C185-53T | 85 | | Water Required for Flow of 88 Percent in C185
Mortar | 57 | | Table XII Water Required for Flow of
88 Percent in Cl85 Mortar | 86 | | Tests for: | | | Page | |---|-------------------|---|----------------| | Autoclave E
ASTM Design | Expansi
ation: | on of Portland Cement
Cl51-54 | | | Analysis
Supplemer
Pressure | ntary C | oclave Tests
bservations on the Effect of | 26
26 | | Correlati
Conclusio | on Dat | a for Pressure and Length Changes
h Respect to the Autoclave Tests
for Future Work | 27
33
33 | | Table | 12 Au | sults of the Autoclave Test
toclave Tests which are Within | 28
29 | | 11 | 13 Re | ontrol Limits peatability and Producibility | 30 | | tt | 14 An | f Autoclave Tests
alysis of Variance of the Data | 31 | | 11 | 15 An | n Table 11
alysis of Variance Using Values
iven in Table 12 | 32 | | Table | | toclave Expansion
TM Designation: Cl51-54 | 84 | | Chemical Ana
Sulfate in F
ASTM Designat | lydrate | f Portland Cement for Calcium
d Portland Cement Mortar
C265-55T | 66 | | Table | | Chemical Analysis of Portland
Cement for Calcium Sulfate
ASTM Designation: C265-54T | 101 | | Chemical Anal | lysis c | of Portland Cement
C114-53 | | | | | nemical Analyses for Na20 and K20 | 34 | | and Statist | tical A
s with | nalysis of the Data
Respect to the Chemical
20 and K20 | 45 | | Table | | Sodium Oxide and Potassium Oxide in Portland Cement by Flame Photometer | 35 | | ŧŧ | 17 | ASTM Designation: C228-49T
Repeatability and Reproducibility of
Na ₂ O and K ₂ O Analyses | 36 | | lest for: | | Page | |---------------------------------|--|------| | Chemical Analysis o | f Portland Cement (Continued) | | | Table 18 | Table Showing Laboratories and
Tests within Control Limits | 37 | | Table 19(A) | Results of Analyses of Portland
Cement for Na ₂ O Using the Beck- | 39 | | " 19(B) | man DU Spectrophotometer Results of Analyses of Portland Cement for K20 Using the Beckman | 40 | | " 20 | DU Spectrophotometer Tabulation of the Data on Control | 4] | | 11 21 | Limits
Analysis of Variance of the Data
Reported in Rounds 2 to 5 | 43 | | Table XXVI | Chemical Analysis of Portland
Cement for Sodium Oxide | 102 | | Table XXVII | ASTM Designation: C228-49T
Chemical Analysis of Portland
Cement for Potassium Oxide
ASTM Designation: C228-49-T | 103 | | | f Portland Cement for Silicon | 60 | | Dioxide
Conclusions with Res | spect to the Analysis of SiO2 | 60 | | Table 27 | Computed Control Limits for Averages (\overline{X}) and Ranges (R) for Silicon Dioxide | 62 | | tt 28 | Repeatability and Reproducibility of Analyses for Silicon Dioxide | 63 | | Table XVII | Chemical Analysis of Portland
Cement for Silicon Dioxide
ASTM Designation: Cl14-53 | 93 | | Chemical Analysis of Oxide | f Portland Cement for Aluminum | 61 | | Table XVIII | Chemical Analysis of Portland
Cement for Aluminum Oxide
ASTM Designation: Cll4-53 | 94 | | Chemical Analysis of | f Portland Cement for Ferric Oxide | 61 | | Table XIX | Chemical Analysis of Portland
Cement for Ferric Oxide
ASTM Designation: Cl14-53 | 95 | | ľest | for: | | | P | 'age | |--------------|-------------------|--------------------------|---------------------|--|----------| | Che | emical | Analy | sis of | Portland Cement (Continued) | | | (| Chemica
Oxide | al Ana | lysis o | f Portland Cement for Calcium | 65 | | | | Table | XX | Chemical Analysis of Portland
Cement for Calcium Oxide
ASTM Designation: Cl14-53 | 96 | | (| Chemica
Oxide | al Ana | lysis o | f Portland Cement for Magnesium | 65 | | | | Table | IXX | Chemical Analysis of Portland
Cement for Magnesium Oxide
ASTM Designation: Cll4-53 | 97 | | (| Chemica
Igniti | | lysis o | f Portland Cement for Loss on | 65 | | | | Table | XXII | Chemical Analysis of Portland
Cement for Ignition Loss
ASTM Designation: Cl14-53 | 98 | | ĺ | Chemica
Triox: | | lysis o | f Portland Cement for Sulfur | 66 | | | | Table | XXIV | Chemical Analysis of Portland
Cement for Sulfur Trioxide
ASTM Designation: Cl14-53 | 100 | | | | Table | XXIII | Chemical Analysis of Portland
Cement for Insoluble Residue
ASTM Designation: Cl14-53 | 99 | | Comp
ASTM | ressiv
Desig | e Stre | ength of
1: ClO9 | Hydraulic Cement Mortars | | | | Conclu | is of
sions
gth Te | with Re | pressive Strength Tests spect to the Compressive | 23
25 | | | | Table | 9 | Computed Control Limits for Averages (X) and Ranges (R) | 23 | | | | 11 | 10 | for Compressive Strength Tests
Repeatability and Reproducibility
of Compressive Strength Tests | 24 | | | | | | | | | Test for: | | Page | |---|--|----------------| | Compressive Strength (Mortars (Continued) | of Hydraulic Cement | | | Table VIII | Compressive Strength of Hydraulic Cement Mortars ASTM Designation: C109-54T Part 1 Part 2 Part 3 | 80
81
82 | | Water required for F
Mortar | Flow of 108 Percent in C109 | 57 | | Table IX | Water Required for Flow of 108 Percent in Cl09 Mortar | 83 | | False Set of Portland ASTM Designation: C35 | Cement
59-55T | 58 | | Table XIII | False Set of Portland Cement
ASTM Designation: C359-55T
Part 1
Part 2
Part 3 | 87
88
89 | | False Set of Portlan
Federal Specification | | 58 | | Table XIV | False Set of Portland Cement Federal Specifications SS-C-158c, 4.4.11 | 90 | | False Set of Portlan
Test Method No. Cali | | 5 9 | | Table XV | False Set of Portland Cement
Test Method No. Calif. 503A | 91 |
Fineness of Portland Cement by Air Permeability Apparatus ASTM Designation: C204-55 Fineness of Portland Cement by the Turbidimeter ASTM Designation: C115-53 | Test for: | | Page | |---|--|----------| | Fineness of Portlan | d Cement (Continued) | 1 486 | | Analysis of the T
Turbidimeter and | ests for Fineness by the the Air Permeability Apparatus Respect to the Turbidimeter and | 47
47 | | Table 22 | Computed Control Limits for Averages (X) and Ranges (R) for the Fineness Tests (Turbidimeter Tests and Air | 48 | | Table 23 | Permeability Tests) Repeatability and Reproduci- bility of the Turbidimeter and Air Permeability Fineness Tests All Tests | 49 | | Table III | Fineness of Portland Cement by the Turbidimeter ASTM Designation: Cll5-53 | 71 | | | Fineness of Portland Cement by the Air Permeability Apparatus ASTM Designation: C204-55 | 71 | | Normal Consistency T
ASTM Designation: C | <u>lest</u>
187–55 | 53 | | | Normal Consistency
ASTM Designation: C187-49 | 69 | | Penetration of Plung
Percentage of Water
Division of Highways | er C in a Paste Made with
Designated by the California | 54 | | | Penetration of Plunger C of
ASTM C 187-49 in Paste Made
With Percentage of Water
Designated by California
Division of Highways | 70 | | Specific Gravity of ASTM Designation: C | Portland Cement
188-44 | 59 | | | Specific Gravity of Portland
Cement
ASTM Designation: C188-44 | 92 | | Test for: | | | Page | |---|-------------|---|------------------------| | <u>Tensile Streng</u>
ASTM Designati | th of on: C | Hydraulic Cement
190-49 | | | Analysis of
Differences
Mixed Morta | Betwee: | nsile Strength Tests
n Hand Mixed and Machine | 8
16 | | | | espect to the Tensile Strength | 22 | | Table | 1 | Tensile Strength Tests
ASTM Designation: C190-49 | 10 | | ŧŧ | 2 | Tensile Strength Tests ASTM Designations: C190-49 | 11 | | 11 | 3 | and C305-53T
Computed Control Limits for
Averages (X) and Ranges (R) | 12 | | 11 | 4 | for Tensile Strength Tests Tensile Strength Test Results in Statistical Control from | 13 | | tr | 5 | Tables 1 and 3 Tensile Strength Test Results in Statistical Control from Tables 2 and 3 | 14 | | Chart | - Cont | trol Chart for Averages $(\overline{\mathbb{X}})$ and of Tensile Strength | 15 | | Table
Table | | Tensile Strength of Hydraulic
Cement Mortars
ASTM Designation: C190-49
Part 1
Part 2
Part 3
Tensile Strength of Hydraulic
Cement Mortars (Machine Mixed) | 74
74
75
76 | | | | ASTM Designations: C190-49 and C305-53T Part 1 Part 2 Part 3 | 77
78
7 9 | | Time of Settin | | icat Needle | 54 | | ASTM Designati Conclusions | | 1 <u>91-52</u>
espect to the Time of Setting | 55 | | by Vicat Ne | | - | | | | viii | |--|--| | Tested for: | Page | | Time of Setting by Vicat Needle (Con | tinued) | | Table 26 Control Limits (X) and Ranges of Setting by | (R) for Time | | Table V Time of Setting
Cement by Vicat
ASTM Designation | t Needle | | Time of Setting of Hydraulic Cement ASTM Designation: C266-51T | by Gillmore Needles | | Analysis of the Tests for Time of S | Setting by 50 | | Conclusions with Respect to the Tir | ne of Setting Test 50 | | the Time of Set | ol Limits for 51
nd Ranges (R) for
tting by Gillmore | | | and Reproducibility 52
Setting Tests by
es | | Table IV Time of Setting
Cements by the
ASTM Designation | Gillmore Needles | | Conclusions with Respect to All of the | Tests 67 | 68 References ## State of California Department of Public Works Division of Highways #### MATERIALS AND RESEARCH DEPARTMENT January, 1957 The experimental data discussed in this report were obtained as a part of a co-operative test series initiated by the Materials and Research Department of the California Division of Highways, and participated in by the laboratory of the Division, the laboratories of the eleven manufacturers of portland cement in California, and an out-of-state research laboratory, a total of thirteen participants. The following is an alphabetical list of the laboratories which are referred to in this study by the code letters "A" to "M". Blue Diamond Corporation Mill at Los Angeles, California Stuart R. Garnett, Chief Chemist Calaveras Cement Company Mill at San Andreas, California M. C. Sutton, Chief Chemist California Division of Highways Materials and Research Department Laboratory at Sacramento, California F. N. Hveem, Materials and Research Engineer California Portland Cement Company Mill at Colton, California W. C. Hanna, Vice President in Charge of Technical Development Ideal Cement Company Mill at Redwood City, California H. W. Andrews, Chief Chemist Ideal Cement Company Research Laboratory, at Fort Collins, Colorado G. C. Wilsnack, Director of Research, and K. E. Palmer, Assistant Director of Research Ideal Cement Company Mill at San Juan Bautista, California L. Caetano, Chief Chemist Monolith Portland Cement Company Mill at Monolith, California John Partlow, Chief Chemist Permanente Cement Company Mill at Permanente, California O. E. Jack, Chief Chemist Riverside Cement Company Mill at Crestmore, California L. L. Cook, Chief Chemist Riverside Cement Company Mill at Oro Grande, California E. A. Curley, Chief Chemist Santa Cruz Portland Cement Company Mill at Davenport, California Norman Jones, Chief Chemist Southwestern Portland Cement Company Mill at Victorville, California L. R. Indermuehle, Chief Chemist The above list of participants is not in the same order as the letter designation assigned to them in this report. #### Preparation of the Cement Samples This study was intended to include all of the standard cement tests, and also some other tests which have not yet attained that status; and each laboratory was requested to perform duplicate tests on three samples of cement. The cements included in the study were selected by the California Division of Highways, who communicated privately with three of the eleven manufacturers listed above, and requested them to furnish the cement. The selected manufacturers, each took 4 sacks of cement in succession from a single packing machine, and shipped them in waterproof bags to the Materials and Research Department in Sacramento. Upon arrival at the Sacramento laboratory, each lot of cement was given a code number (1 to 3) for future identification. Each lot of cement was then mixed and subdivided by the following procedure. One sack was emptied in the Lancaster mixer and mixed for one minute. Equal weights of the cement were then placed in four galvanized cans. The remaining sacks were then similarly treated. The contents of each of the four galvanized cans was then mixed for two minutes and returned to its can. Samples weighing 20 pounds each were weighed out in succession from the galvanized cans and placed in 1-gallon cans. Each can was marked with the proper code number. None of the samples showed a residue on the No. 20 sieve. In addition to the 20-pound sample, each co-operating laboratory was furnished with a carefully prepared sample of 40 grams of each cement in a sealed glass vial. This sample was for use in the specific surface tests and for the chemical analysis. Three other samples of cement were also especially prepared by one of the cement manufacturers and sent to each participant for the "false set" tests. The samples prepared by the Division of Highways laboratory were, as heretofore noted, designated by the numbers 1, 2 and 3. The samples for the false set test were designated 4, 5, and 6. The two sets of samples were not related to one another in any way. The California Division of Highways laboratory was the only participant knowing the identity of samples 1 to 3. All participants knew that samples 4, 5, and 6, were prepared by the one manufacturer. All samples were transported in strong wooden boxes to the participating laboratories. #### Results of the Tests The complete results of all determinations by all of the participating laboratories are given in Tables I to XXVII. All of the data used in the statistical analyses of the results were obtained from these tables. Several previous reports have been issued on the results of a number of the tests and a summary of these reports are a part of this paper. A number of statistical techniques have been employed in analyzing the results of the tests. A description of these methods is given below. Statistical Methods Used in the Analysis of the Experimental Data Control Limits for Averages (\overline{X}) and Ranges (R) The observed variations in sets of observations such as are reported in this paper, are due to a variety of causes. It is impossible to state all of the reasons why repeated determinations differ from one another, or to specify why successive batches or units of material are not identical. Some of the causes of variation can be identified, and perhaps eliminated, and these are termed assignable causes of variation. There are other causes inherent in the analytical or testing procedures which are impossible to locate, and hence they cannot be removed. We designate these causes as unassignable or chance causes of variation; or sometimes as experimental, or residual error. It is possible by using certain statistical methods to establish limits within which repeated determinations of some given characteristic will nearly always fall, providing that no assignable causes of variation are present.
These limits are called "control limits" and the methods for computing them are a part of a statistical discipline known as statistical quality control (1,2)*. Values which lie outside of these limits are said to be "out of control", and unless it can be shown that the results obtained by the use of a given test method are within control limits, the method is considered to be unreliable. In this report control limits for averages (\overline{X}) and ranges (R) have been computed. Control limits are frequently represented graphically on "control charts". #### Statistical Measures of Precision In this paper the precision of a test method is considered as a measure of the closeness of the agreement between the results of a series of independent tests made on identical samples of material, when the conditions under which the method is used are well controlled. The average deviation is often used as such a measure but it is now being superseded by the standard deviation. The standard deviation is the root-mean-square deviation of the *Figures in parentheses refer to references at the end of the paper. observed values from their average. When the number of items in a sample is small, the standard deviation is the square root of the variance, and in computing a variance, the denominator is the degrees of freedom or N-l in this case. Dividing the sum of squares by degrees of freedom makes a sample variance an unbiased estimate of the universe variance. The expression used for computing the standard deviation in this study is: $$C = \sqrt{\sum_{X} \frac{(\sum X)^2}{N-1}}$$ in which \mathcal{S} = The standard deviation X = An item of data N = The number of items of data Σ = The sign of summation The standard deviation may also be expressed as a percent of the average value, in which case it is called the coefficient of variation (v). This coefficient is useful in comparing sets of values with different absolute average values. The standard deviation is a suitable measure of the precision of a single measurement. It also leads to an estimate of the precision of an average. This value, which is also termed the standard error of the mean, is computed by using the expression: $$C_{\overline{X}} = C_{\overline{N}}$$ Statistical Measures of Repeatability and Reproducibility The definitions and methods for computing repeatability and reproducibility are found in "Proposed Recommended Practices for Applying Precision Data Given in ASTM Methods of Test for Petroleum Products and Lubricants." (3) In this publication, repeatability is defined as a quantitative measure of the variability associated with a single operator in a given laboratory, generally with the same apparatus, and within a small interval of time. It is the greatest difference between two single and independent results that can be considered acceptable at the 95 percent probability level.* The steps in computing repeatability involve first, the calculation of a value known as "repeatability standard deviation." The value of repeatability is then obtained by multiplying repeatability standard deviation by an appropriate factor which depends on the degrees of freedom (number of test results minus one). Estimates of repeatability standard deviations may be obtained by combining (pooling) the differences between results from each of several operators in different laboratories (carrying out the same determinations on identical materials) from his mean. When k operators, each from a different laboratory produce a pair of results with differences of d1, d2, ... d_k , the repeatability standard deviation is given by the expression $$s_r = \sqrt{\frac{d_1^2 + d_2^2 + \dots + d_k^2}{2_k}}$$ Reproducibility is defined as a quantitative measure of the variability associated with operators working in two different laboratories. It is the greatest difference between a single test result obtained in one laboratory and a single test result obtained in another laboratory that need not be considered suspect (significantly different) at the 95 percent probability level. When k operators each in a different laboratory produce results, the average of which is $\overline{\lambda}_k$ and the grand average is $\overline{\lambda}$, then the reproducibility standard deviation is $$s_{r} = \sqrt{(\overline{x}_{1} - \overline{x})^{2} + (\overline{x}_{2} - \overline{x})^{2} + \dots + (\overline{x}_{k} - \overline{x})^{2}}$$ The value for reproducibility is obtained by multiplying the calculated value for S_r by an appropriate factor for the number of tests involved. *Other levels of probability can be used but 95 percent is recommended in the reference cited. The above definitions assume that the method of test is under control by the user, that is, that variations arising from assignable causes have been eliminated. #### The Statistical Analysis of Variance An analysis of variance is a statistical technique used in the examination of experimental data. (4) If any set of observations is the result of one or more factors, the total variation between the observations in the set can be separated into components which can or cannot be attributed to the several factors, or to interactions between them. Statistical tests in the form of critical values are available for deciding which of the factors are associated with a significant fraction of the total variation. The results are usually classified as "highly significant", "significant", or "not significant." An interaction means the tendency for the combination of factors, say A and B, or A,B, and C, to produce a result that is different from the mere sum of their two or three individual contributions. The analysis of variance is especially useful when the effect of the factors or their interactions are not immediately obvious on visual inspection of the data. Interactions are represented by the notation A x B, or A X B X C, where the letters represent the different factors. #### Analysis of the Tensile Strength Tests The first tests discussed in this report are the tensile strength tests performed in accordance with A.S.T.M. Designation C 190-49 at 3 days and 7 days, and also the tensile strength test results obtained on similar mortars machine mixed according to A.S.T.M. Designation C 305-53T. The amount of water to be used in the several mortars was designated by the California Division of Highways and each laboratory used the same amount with a given cement. The purpose of making the tensile tests was twofold; (1) to determine the correlation in results between laboratories and (2) to obtain data of use to the Working Committee on Strength of A.S.T.M. Committee C-l in its consideration of the mechanical mixing of mortars in this test. The complete results of the tensile strength tests are shown in Tables VI and VII. All tables designated by Roman numerals are at the end of the report, and they contain a complete tabulation of all of the results. Tables designated by Arabic numerals are in the body of the report and they record the results of the statistical analyses of the data. Tables 1 and 2 show the results of the tests before the elimination of the out-of-control observations. Each tabulated value in these tables is the average of the tensile strength test on three briquets. Table 3 shows the computed control limits for averages (\overline{X}) and ranges (R). All experimental values within these limits are comparable. In order to make a precise division it was necessary to compute the control limits to one-tenth of a pound per square inch, and in a number of cases an experimental value is in or out of the limits by a rather small amount. Tables 4 and 5 are similar to Tables 1 and 2 except that the out-of-control values have been omitted and that the standard deviation in pounds per square inch and the coefficient of variation (in percent) of these averages is shown in the last two rows of the tables. Figure 1 is an example of a control chart. In both series of tensile strength tests and in the compressive strength test series, the computations for control limits were made on subgroups with three individual tests in each subgroup. These three individual tests were each from the same batch of mortar. For the thirteen laboratories, there were therefore, twenty-six subgroups considered. We have now arrived at the tentative conclusion that the computations for control limits could more properly have been made using the two averages of each group of three tests as a subgroup, rather than by using the procedure as described above. Probably this would have not brought all of the results within control limits, but the procedure seems to be more logical. Table 1 Tensile Strength Tests of Three Portland Cements Designated 1, 2 and 3, by Twelve Laboratories Designated A to M According to ASTM Method Designation C 190-49 Each Tabulated Value is the Average of Three Briquet Tests | | 7 | 3 | Days | · | | 11 | | 7 Day | s | | |------|----------------|--------------------------|--------------------------|--------------------------|--------------------------|-----|---------------------------|--------------------------|--------------------------|--------------------------| | Lab. | Test | 1 1 | 2 | 3 | Avg. | | 1 | 2 | Ĭ 3 | Avg. | | A | 1
2
Avg. | 268
262
265 | 240
<u>248</u>
244 | 307
303
305 | 273
271
271 | | 350
353
352 | 307
312
310 | 387
378
382 | 348
348 | | В | l
2
Avg. | 272
270
271 | 233
236
234 | 241
238
240 | 249
248
248 | | 338
345
342 | 295
305
300 | 382
334
339
336 | 348
322
330
326 | | С | 1
2
Avg. | 298
<u>302</u>
300 | 248
<u>245</u>
246 | 335
338
336 | 294
291
294 | | 395
<u>377</u>
386 | 331
351
341 | 403
362
382 | 365
363
364 | | D | l
2
Avg. | 292
298
295 | 247
260
254 | 355
327
341 |
298
<u>295</u>
296 | | 353
345
349 | 325
320
322 | 405
390
398 | 361
352
356 | | E | l
2
Avg. | 300
295
297 | 255
225
240 | 333
322
328 | 296
281
288 | | 407
373
390 | 390
312
351 | 422
397
408 | 406
361
383 | | F | l
2
Avg. | 257
282
270 | 237
242
240 | 330
405
368 | 274
309
292 | Ι. | 343
347
345 | 320
315
318 | 318
415
366 | 327
359
343 | | G | 1
2
Avg. | 262
248
255 | 248
233
240 | 283
316
300 | 264
266
265 | | 387
372
380 | 312
312
312 | 401
412
406 | 366
365
366 | | Н | 1
2
Avg. | 208
265
236 | 200
233
216 | 280
315
298 | 229
<u>271</u>
250 | | 295
345
320 | 270
298
284 | 353
383
368 | 306
342
324 | | I | l
2
Avg. | 228
262
245 | 195
210
202 | 285
267
276 | 236
246
241 | - | 363
363
363 | 298
<u>340</u>
319 | 328
360
344 | 330
354
342 | | J | l
2
Avg. | 262
322
292 | 218
242
230 | 306
<u>304</u>
305 | 262
289
276 | | 376
342
359 | 303
321
312 | 360
<u>408</u>
384 | 347
357
352 | | L | 1
2
Avg. | 295
257
276 | 235
213
224 | 315
307
311 | 282
259
270 | - | 340
368
354 | 325
312
318 | 390
388
389 | 352
356
354 | | M | 1
2
Avg. | 297
<u>334</u>
316 | 247
<u>246</u>
246 | 309
<u>325</u>
317 | 284
<u>302</u>
293 | 4 | 363
4 <u>44</u>
404 | 356
<u>350</u>
353 | 425
<u>430</u>
428 | 381
<u>408</u>
395 | | Gran | d Avg. | 276 | 235 | 311 | 274 |] : | 362 | 320 | 381 | 354 | Table 2 Tensile Strength Tests of Three Portland Cements Designated 1, 2 and 3, by Twelve Laboratories Designated A to M According to ASTM C190-49 and Mixed According to ASTM C305-53T Each Tabulated Value is the Average of Three Briquet Tests | | | 3 Days | | | | T Total | T | | | |------|---------------|------------|-----|--------------|------------|------------|------------|------------|------------| | Lab. | Test | 1 | 2 | 3 | Avg. | 1 | 7 Da
2 | 3 | Avg. | | A | 1 | 307 | 243 | 343 | 298 | 395 | 317 | 408 | 373 | | | 2 | 292 | 250 | 347 | 296 | <u>373</u> | 308 | 411 | <u>364</u> | | | Avg. | 300 | 246 | 345 | 297 | 384 | 312 | 410 | 368 | | В | 1 | 303 | 198 | 292 | 264 | 404 | 324 | 431 | 386 | | | 2 | <u>311</u> | 203 | 294 | 269 | 405 | 319 | 431 | 385 | | | Avg. | 307 | 200 | 293 | 266 | 404 | 322 | 431 | 386 | | С | l | 308 | 226 | 362 | 299 | 415 | 308 | 444 | 389 | | | 2 | 312 | 229 | 348 | 296 | 413 | 329 | <u>451</u> | 398 | | | Avg. | 310 | 228 | 355 | 298 | 414 | 318 | 448 | 394 | | D | 1 | 288 | 237 | 325 | 283 | 368 | 333 | 370 | 357 | | | 2 | 308 | 230 | 328 | 289 | 338 | 333 | 412 | 361 | | | Avg. | 298 | 234 | 326 | 286 | 353 | 333 | 391 | 359 | | E | 1 | 298 | 238 | 3 <i>5</i> 3 | 296 | 373 | 307 | 417 | 366 | | | 2 | 265 | 262 | 367 | 298 | 358 | 287 | 418 | <u>354</u> | | | Avg. | 282 | 250 | 360 | 297 | 366 | 297 | 418 | 360 | | F | l | 276 | 235 | 303 | 271 | 373 | 320 | 407 | 367 | | | 2 | 242 | 258 | 295 | 265 | 382 | 296 | 386 | <u>355</u> | | | Avg. | 269 | 246 | 299 | 268 | 378 | 308 | 396 | 361 | | G | 1 | 277 | 217 | 320 | 271 | 363 | 288 | 408 | 353 | | | 2 | 280 | 227 | 308 | 272 | 367 | <u>327</u> | 420 | 371 | | | A v g. | 278 | 222 | 314 | 272 | 365 | 308 | 414 | 362 | | Н | l | 273 | 213 | 302 | 263 | 326 | 345 | 388 | 353 | | | 2 | 273 | 210 | 284 | 256 | 327 | 290 | <u>352</u> | 323 | | | Avg. | 273 | 212 | 293 | 260 | 326 | 318 | 370 | 338 | | I | l | 240 | 228 | 278 | 249 | 352 | 285 | 373 | 337 | | | 2 | 238 | 193 | 280 | 237 | 353 | <u>323</u> | <u>367</u> | <u>348</u> | | | Avg. | 239 | 210 | 279 | 243 | 352 | 304 | 370 | 342 | | J | 1 | 297 | 238 | 326 | 287 | 369 | 319 | 372 | 353 | | | 2 | 276 | 250 | 329 | 285 | <u>356</u> | 332 | 394 | 361 | | | Avg. | 286 | 244 | 328 | 286 | 362 | 326 | 383 | 357 | | L | l | 295 | 233 | 305 | 278 | 381 | 325 | 408 | 371 | | | 2 | 255 | 212 | 308 | 258 | <u>361</u> | 298 | 408 | 356 | | | Avg. | 275 | 222 | 306 | 268 | 371 | 312 | 408 | 364 | | М | 1 | 285 | 269 | 329 | 278 | 391 | 317 | 412 | 373 | | | 2 | 295 | 236 | 336 | <u>289</u> | <u>403</u> | <u>354</u> | <u>432</u> | <u>396</u> | | | Avg. | 290 | 252 | 332 | 284 | 397 | 336 | 422 | 384 | | Gran | nd Avg. | 283 | 231 | 319 | 277 | 373 | 316 | 405 | 364 | Table 3 Computed Control Limits for Averages (\overline{X}) , and Ranges (R), for Tensile Strength Tests | | | Standard | Hand Mix | ced Mor | tars | | | |----------------------------|----------------------------|--|--|--|--|---|--------------------| | Cement
Number | Age,
Days | Grand
Average | Average
Range
R | Comput
Aver
UCL* | ed Conti
age X
LCL** | rol Limi
Rang
UCL | its
ge R
LCL | | 1
2
3
1
2
3 | 333777 | 278.7
239.9
312.6
355.6
313.6
387.8 | 25.3
24.0
40.0
26.6
27.3
33.9 | 304.6 252.8
264.5 215.3
353.5 271.7
382.8 328.4
341.5 285.7
422.5 353.1 | | 65.1
61.8
103.0
68.5
70.3
87.3 | 00000 | | | | Machi | ne Mixed | Mortar | S | | | | 1
2
3
1
2
3 | 3
3
3
7
7
7 | 288.4
232.2
315.3
373.4
312.0
405.5 | 27.6
27.2
28.4
36.6
29.4
35.4 | 316.6
260.0
344.1
410.8
342.1
441.7 | 260.2
204.4
286.5
336.0
281.9
369.3 | 71:3
70:0
72:6
94:2
75:7
91:2 | 00000 | *UCL = Upper Control Limits **LCL = Lower Control Limits Table 4 Tensile Strength Test Results in Statistical Control from Tables 1 and 3 | | | | 3 Days | 5 | Grand | d 7 Days | | | Grand | |--------------------------------|--------------------------------|-------------------|--------------------------|--------------------------|------------------|--------------------------|--------------------------|--------------------------|------------------| | Lab. | Test | 1. | 2 | 3 | Avg. | 1 | 2 | 3 | Avg. | | A | 1
2
Avg. | 268
262
265 | 240
<u>248</u>
244 | 307
303
305 | | 350
<u>353</u>
352 | 307
312
310 | 387
378
382 | | | В | 1
2
Avg. | 272
270
271 | 233
236
234 | X
X | | 338
<u>345</u>
342 | 295
305
300 | X
X
X | | | С | l
2
Avg. | 298
302
300 | 248
245
246 | 335
338
336 | | х
<u>377</u> | 331
<u>X</u> | 403
362
382 | | | D | l
2
Avg. | 292
298
295 | 247
<u>X</u> | х
<u>327</u> | | 353
<u>345</u>
349 | 325
320
322 | 405
<u>390</u>
398 | | | E | 1
2
Avg. | 300
295
297 | 255
<u>225</u>
240 | 333
<u>322</u>
328 | | X
373 | X
312 | X
397 | | | F | 1
2
Avg. | 257
282
270 | 237
242
240 | 330
X | | 343
<u>347</u>
345 | 320
315
318 | X
415 | | | G | 1
2
Avg. | 262
_X | 248
233
240 | 283
<u>316</u>
300 | | X
<u>372</u> | 312
312
312 | 401
412
406 | | | Н | 1
2
Avg. | X
265 | X
233 | 280
<u>315</u>
298 | | X
345 | X
298 | 353
383
368 | | | I | l
2
Avg. | X
262 | X
X | 285
<u>X</u> | | 363
363
363 | 298
<u>340</u>
319 | X
360 | | | J | 1
2
Avg. | 262
<u>X</u> | 218
242
230 | 306
304
305 | | 376
<u>342</u>
359 | 303
<u>321</u>
312 | 360
408
384 | | | L | 1
2
Avg. | 295
257
276 | 235
_X | 315
307
311 | | 340
<u>368</u>
354 | 325
312
318 | 390
388
389 | | | М | l
2
Avg. | 297
<u>X</u> | 247
246
246 | 309
325
317 | | 363
<u>X</u> | <u>X</u> | X | | | Grand
St.De
Coef:
Var | $Avg.(\bar{X})$ ev. (δ) | 279
17
6.2 | 240
9
3.8 | 313
17
5.5 | 277
14
5.2 | 356
13
3.7 | 314
12
3.8 | 388
19
4.9 | 353
15
4.1 | Table 5 Tensile Strength Test Results in Statistical Control From Tables 2 and 3 | | | 3 Days | | S | Grand | 7 Days | | Grand | | |-------------|---|--------------------------|--------------------------|--------------------------|------------------|--------------------------|--------------------------|--------------------------|------------------| | Lab. | Test | 1 | 2 | 3 | Avg. | 1 | 2 | 3 | Avg. | | A | 1
2
Avg. | 307
292
300 | 243
<u>250</u>
246 | 343
<u>X</u> | | 395
<u>373</u>
384 | 317
308
312 | 408
<u>411</u>
410 | | | В | 1
2
Avg. | 303
X | <u>X</u> | 292
<u>294</u>
293 | | 404
405
404 | 324
319
322 | 431
431
431 | | | С | l
2
Avg. | 308
<u>X</u> | 226
229
228 | X | | X
X | 308
329
318 | X
X | | | D | l
2
Avg. | 288
<u>308</u>
298 | 237
230
234 | 325
<u>328</u>
326 | | 368
338
353 | X
333 | 370
<u>412</u>
391 | | | E | l
2
Avg. | 298
265
282 | 238
<u>X</u> | X | | 373
358
366 | 307
287
297 | 417
418
418 | | | F | 1
2
Avg. | 276
X | 235
258
246 | 303
295
299 | | 373
382
378 | 320
296
308 | 407
386
396 | | | G | l
2
Avg. | 277
280
278 | 217
227
222 | 320
<u>308</u>
314 | | 363
<u>367</u>
365 | 288
<u>327</u>
308 | 408
<u>420</u>
414 | | | Н | 1
2
Avg. | 273
<u>273</u>
273 | 213
210
212 | 302
<u>X</u> | | <u>X</u> X | X
290 | 388
<u>X</u> | | | I | l
2
Avg. | X
X | 228
X | X
X | | 352
353
352 | 285
323
304 | 373
X | | | J |
l
2
Avg. | 297
<u>276</u>
286 | 238
250
244 | 326
329
328 | | 369
356
362 | 319
332
326 | 372
394
383
408 | | | L | 1
2
Avg. | 295
<u>X</u> | 233
212
222
X | 305
308
306 | | 381
361
371 | 325
298
312
317 | 408
408
408
412 | | | M | 1
2
Avg. | 285
<u>295</u>
290 | 236 | 329
336
332 | 050 | 391
403
397 | <u>X</u> | <u>432</u>
422 | 363 | | St. I | i Avg.(X)
Dev. (δ)
f. of
. (V) | 288
13
4.7 | 232
13
5.7 | 315
16
5.1 | 278
14
5.2 | 373
19
5.0 | 312
16
5.1 | 405
19
4.7 | 363
18
4•9 | ## Differences Between Hand Mixed and Machine Mixed Mortars In considering the effect of machine mixing on tensile strength as shown by the data, the overall picture may be viewed somewhat as follows: | Average | e of All | Tests at | 3 Days | | |--|-------------------|--------------------------|-------------------|-------------------| | Cement | l | 2 | 3 | Avg. | | Hand Mixed
Machine Mixed
Machine Mixed | 276
283
+7 | 235
231
-4 | 311
319
+8 | 274
277
+3 | | Average | of All | Tests at | 7 Days | | | Cement | 1 | 2 | 3 | Avg. | | Hand Mixed
Machine Mixed
Machine Mixed | 362
373
+11 | 320
316
-4 | 381
405
+24 | 354
364
+10 | | Average of Al | ll Tests | in Contr | rol at 3 | Days | | Hand Mixed
Machine Mixed
Machine Mixed | 279
288
+9 | 240
232
- 8 | 313
315
+2 | 277
278
+1 | | Average of Al | ll Tests | in Contr | col at 7 | Days | | Hand Mixed
Machine Mixed
Machine Mixed | 356
373
+17 | 314
312
-2 | 388
405
+17 | 353
363
+10 | In attempting a statistical evaluation of the significance of the differences observed between machine mixed and hand mixed batches, we may compare the averages of the results by means of the "t" test. Using this test which is described in nearly all statistical texts, (5) the "significance ratio", or "Student's t" is computed from the data. This ratio is then compared with a tabulation of the critical t values. Tables of critical t values may also be obtained from any modern statistical text. If the computed t ratio is larger than the critical tabulated 5 percent value, the difference between the two sets of data is termed "significant". If the computed t value is larger than the critical tabulated l percent value, the difference is called "highly significant". A t value less than the critical 5 percent value is not significant. Table 6 shows the results of these computations from the data of the tests which are in control limits. Table 6 Results of Computation of t Values for Differences Between Hand Mixed and Machine Mixed Mortars | Composit | Λ σο | Avera
Hand | ge Values
Machine | Computed | Critic
Valu | | | |------------------|------|-------------------|----------------------|----------------------|-------------------------|-------|---| | Cement
Number | | Mixed | Mixed | Values | 5% | 1% | Significan c e | | 1
2
3 | w س | 279
240
313 | 288
232
315 | 1.96
2.12
0.46 | 2.030
2.030
2.030 | 2.724 | Not
significant
Significant
Not
significant | | | | | | | | | | | 1 1 | 7 | 3 <i>5</i> 6 | 373 | 3.37 | 2,030 | 2.724 | Highly
significant | | 2 | 7 | 314 | 312 | 0.41 | 2.021 | 2.704 | Not
significant | | 3 | 7 | 388 | 405 | 2.75 | 2,030 | 2.724 | Highly
significant | In considering the confidence to be placed in the statis— tics that may be computed from measurement data, they are as all laboratory workers know, only as good as the data. They are moreover, simply an expression of the probability that a given hypothesis is correct and it is necessary for any investigator to decide for himself the degree of probability that he is willing to accept. Normally this will depend upon two things; the consequences of drawing a certain type of erroneous conclusion called "an error of the first kind", and on taking the chance of "an error of the second kind". These concepts are discussed in nearly all statistical texts. In most cases a significance level of 5 percent or 1 percent is acceptable. A statistical analysis is of course, no guarantee that a given conclusion is undubitably correct even though the computed probability is high. Statistical techniques do however, have one great advantage, and it is this. They are the best and most rational methods we have for the analysis of such data, and by using them it is possible to proceed systematically, and to arrive at an objective judgment of the significance of the test results. Tables 7 and 8 show the results of the computations for repeatability and reproducibility. The last item in Table 8 shows the average results of the compressive strength tests for comparison. These compressive strength tests will be discussed later in this report. Table 7 Repeatability and Reproducibility of Tensile Strength Tests on Portland Cement by Twelve Laboratories ASTM Designation C 190 | Tensile Strength at 3 Days - All 1 | Tests I | nclude | d | |-------------------------------------|----------------|---------------|---------| | | C | ement | | | | 11 | 2 | 3 | | | | | | | Repeatability-Absolute | 53.4 | 39.2 | 66.2 | | Repeatability-Percent of Average | 19.3 | 16.7 | 21.4 | | Reproducibility-Absolute | 83.2 | 49.2 | 102.8 | | Reproducibility-Percent of Average | 30.1 | 20.9 | 33.2 | | | •= | | | | Tensile Strength at 7 Days - All Te | <u>ests In</u> | <u>cluded</u> | - | | Repeatability-Absolute | 47.4 | 47.4 | 65:0 | | Repeatability-Percent of Average | 13.1 | 14.8 | 17:0 | | Reproducibility-Absolute | 83.8 | 71.8 | 93.5 | | Reproducibility-Percent of Average | 23.1 | 22.4 | 24.4 | | 110010440101110, 1 01 0010 | | <u></u> | <u></u> | | Tensile Strength at 3 Days - Tests | in Con | trol | · · | | Repeatability-Absolute | 50.9 | 43.2 | 69.2 | | Repeatability-Percent of Average | 18.2 | 18.1 | 22.1 | | Reproducibility-Absolute | 53.2 | 26.7 | 51.1 | | Reproducibility-Percent of Average | 19.1 | 11.1 | 16.3 | | 10001000010000 | | | | | Tensile Strength at 7 Days - Tests | in Con | trol | | | Repeatability-Absolute | 44.9 | 47.8 | 62.9 | | Repeatability-Percent of Average | 12.6 | 15.2 | 16.2 | | Reproducibility-Absolute | 38.6 | 34.7 | 57.6 | | Reproducibility-Percent of Average | 10.9 | 11.0 | 14.8 | | 100pt 000010111101 | ···· | | | ## Table 7 (Continued) #### Repeatability and Reproducibility of Tensile Strength Tests on Portland Cement by Twelve Laboratories #### ASTM Designation C 190 Machine Mixed Batches Tensile Strength at 3 Days - All Tests Included | Tensile Strength at 3 Days - All | <u>l'ests</u> | Inclu | | |---|---------------|--------|------| | | | Cemen | t | | | 1 | 2 | 3 | | Repeatability-Absolute Repeatability-Percent of Average | 48.0 | 48.0 | 50.0 | | | 17.0 | 20.8 | 15.7 | | Reproducibility-Absolute | 65.6 | 57.4 | 76.2 | | Reproducibility-Percent of Average | 23.2 | 24.8 | 23.9 | | Tensile Strength at 7 Days - All | Tests | Inclu | | | Repeatability-Absolute Repeatability-Percent of Average | 70.1 | 54.5 | 60.5 | | | 18.8 | 17.2 | 14.9 | | Reproducibility-Absolute Reproducibility-Percent of Average | 74.1 | 54.2 | 74.4 | | | 19.9 | 17.2 | 18.4 | | Tensile Strength at 3 Days - Tes | ts in | Contro | 1 | | Repeatability-Absolute Repeatability-Percent of Average | 47.4 | 49.2 | 49.8 | | | 16.5 | 21.2 | 15.8 | | Reproducibility-Absolute Reproducibility-Percent of Average | 40.2 | 39.2 | 48.5 | | | 14.0 | 16.9 | 15.4 | | Tensile Strength at 7 Days - Tes | ts in | Contro | | | Repeatability-Absolute | 72.1 | 47.5 | 62.1 | | Repeatability-Percent of Average | 19.3 | 15.2 | 15.3 | | Reproducibility-Absolute Reproducibility-Percent of Average | 55.6 | 46.3 | 56.5 | | | 14.9 | 14.8 | 13.9 | Table 8 Tensile Strength | | | 3 Days | 7 Days | | | |--|---------|--------------|---|------------|--| | Hand Mixed | All | Cntrolld. | All | Cntrolld. | | | | Tests | Tests | Tests | Tests | | | Grand Average: | | | | | | | Repeatability-% of Average | 19.1 | 19.5 | 15.0 | 14.7 | | | Reproducibility-% of Average | 28.1 | 15.5 | 23.3 | 12.2 | | | | | | | | | | Machine Mixed | | | | | | | Grand Average: | | 3 | | | | | Repeatability-% of Average | 17.8 | | 17.0 | 16.6 | | | Reproducibility-% of Average | 24.0 | 15.4 | 18.5 | 14.5 | | | | | | | | | | All Tests | Hand | Mixed | Machine Mixed | | | | Grand Average: | _ | | | _ , | | | Repeatability-% of Average | | .7.0
25.7 | 17 | 7.4 | | | Reproducibility-% of Average | - 6 | 5.7 | لــــــــــــــــــــــــــــــــــــــ | - • ~ | | | | | | | | | | Compressive | e Strer | gth ClO9 | | | | | | | 3 Days | 7 Days | | | | Machine Mixed | All | Cntrolld. | All | Cntrolld. | | | | Tests | Tests | Tests | Tests | | | | | | | | | | Grand Average: | 9.1 | 8.4 | 8.0 | 7.1 | | | Repeatability-% of Average
Reproducibility-% of Average | 22.8 | 8.3 | 25.4 | 7.1
8.7 | | | Webi ouncipition or wrotago | ~~• | | | | | ## Conclusions with Respect to the Tensile Strength Tests - 1. The data of the tensile strength test indicates that none of the co-operating laboratories were able to perform the test without one or more of the observations being outside of the control limits. This is as heretofore noted, evidence of the presence of assignable causes of variation which must be located and removed before the testing procedure can be considered to be reliable. A larger number of subgroups of tests could conceivably change the picture to some extent, but it is probable that any test series in which a substantial number of laboratories test a reasonably large number of samples will show the same thing. - 2. The precision of the tensile
strength test as shown by the coefficient of variation is approximately 5 percent for the results that are within control limits. - 3. There may be a real difference between the results of tensile strength tests obtained from machine mixed or hand mixed mortars. Different cements may not be affected in the same manner by the method of mixing and the method of mixing may or may not be significant at all ages. - 4. With respect to the merits of machine mixing of tensile strength mortar, the analysis appears to indicate that when out-of-control results are eliminated, it has no advantage over hand mixing with respect to repeatability and reproducibility. When all of the reported test results are included, machine mixing appears to give slightly better reproducibility than hand mixing. - 5. The test for compressive strength is shown to be far superior to the tensile test with respect to repeatability and also to reproducibility when out-of-control results are eliminated. #### Analysis of the Compressive Strength Tests The complete results of the compressive strength tests are shown in Table VIII. The results of the statistical analysis of the data are given below. The results of the computations for control limits are given in Table 9, and the results of the computations for repeatability and reproducibility are shown in Table 10. The amount of water used in the several mortars was designated by the California Division of Highways and each laboratory used the same amount with a given cement. Table 9 Computed Control Limits for Averages (\overline{X}) Ranges (R) for Compressive Strength Tests | Cement | Age, | Grand Average Computed Contract Average Range Average X UCL* | | col Lim
Rang
UCL | | | | |--------|------|--|---------|------------------------|--------|----------------|---| | Number | Days | A | <u></u> | 000. | | 002 | | | l | 3 | 1666.3 | 59•4 | 1727.1 | 1605.5 | 153.0 | 0 | | 2 | 3 | 1607.6 | 85.8 | 1695.4 | 1519.8 | 195.2 | 0 | | 3 | 3 | 2073.9 | 120.2 | 2196.9 | 1950.9 | 309.5 | 0 | | 1 | 7 | 2603.4 | 98.7 | 2704.4 | 2502.4 | 254.2 | 0 | | 2 | 7 | 2495.0 | 121.0 | 2618.8 | 2371.2 | 311.6 | 0 | | 3 | 7 | 3072.1 | 140.9 | 3216.2 | 2928.0 | 362 . 8 | 0 | ^{*} Upper control limits ^{**} Lower control limits Table 10 Repeatability and Reproducibility of Compressive Strength Tests All Tests | Age, | | Cement Number | | | |-------------|--|------------------------|------------------------|------------------------| | Days | | 1 | 2 | 3 | | 3 3 3 | Repeatability Standard Deviation
Repeatability - Absolute
Repeatability - Percent of Average | 36.8
104.5
6.3 | | 80.3
228.1
11.0 | | 333 | Reproducibility Standard Deviation
Reproducibility - Absolute
Reproducibility - Percent of Average | 137.0
398.7
23.9 | 366.7 | 154.6
449.9
21.7 | | 7
7
7 | Repeatability Standard Deviation
Repeatability - Absolute
Repeatability - Percent of Average | | 73.5
208.7
8.4 | | | 7
7
7 | Reproducibility Standard Deviation
Reprodubility - Absolute
Reproducibility-Percent of Average | 642.2 | 254.5
740.6
29.7 | 231.5
673.7
21.9 | | | Tests in Control | | | | | 3 3 3 | Repeatability Standard Deviation
Repeatability-Absolute
Repeatability-Percent of Average | 35.7
106.0
6.3 | 142.2 | | | 3 33 | Reproducibility Standard Deviation
Reproducibility-Absolute
Reproducibility-Percent of Average | 32.5
106.0
6.3 | 46.5
144.6
9.1 | 65.4
198.2
9.6 | | 7
7
7 | Repeatability Standard Deviation
Repeatability-Absolute
Repeatability-Percent of Average | 51.7
151.5
5.8 | 65.4
201.4
8.0 | 78.8
228.5
7.4 | | 7 7 7 | Reproducibility Standard Deviation
Reproducibility-Absolute
Reproducibility-Percent of Average | 49.8
156.9
6.0 | 85.4
310.9
12.3 | 80.5
245.5
7.9 | # Conclusions with Respect to the Compressive Strength Test - 1. A substantial number of the laboratories were out of control limits on the compressive strength test as shown by the data in Table VIII. - 2. The compressive strength test is superior to the tensile strength test with respect to repeatability and also to reproducibility when out-of-control tests are eliminated. #### Analysis of the Autoclave Tests The complete results of the autoclave test are shown in Table X. The results of the statistical analysis of these data are given below. The amount of water used in fabricating the test specimens was designated by the California Division of Highways. Table 11 is a tabulation of the results and shows averages, maximum and minimum values, and ranges. Table 12 is a record of these same values for the tests that were in statistical control and also shows the computed control limits. Table 13 shows the results of the computations for repeatability and reproducibility. In this series of tests, it is again observed that a substantial number of the tests are out of control. As a confirmation of the theory that control limits indicate assignable causes of variation, it is of interest to compare two analyses of variance of the data. One of the analyses was made on all of the reported values and clearly indicates that there were assignable causes of variation other than that produced by the differences in the three samples of cement. The analysis of the variance of the results that were in control limits, shows that the only significant cause of variation in this case was produced by the difference in the cements. These two analyses are shown in Tables 14 and 15. ### Supplementary Observations on the Effect of Pressure The method of test for the autoclave expansion of cement permits an autoclave pressure of 295 psi plus or minus 10 psi. All autoclaves are equipped with thermostatic controls, and the pressure during the 3 hours duration of the test is constantly varying between high and low, but within the prescribed limits. In this series of tests, the co-operating laboratories were asked to report the indicated gage pressure as the average of 12 readings at 15 minute intervals, starting 15 minutes after pressures reached 295 psi. These reported observations varied from 286 psi to 304 psi. This supplement reports an attempt to evaluate the effect of pressure on the length changes of the specimens by testing for a correlation between them. The correlations found are linear, between 286 psi and 304 psi only, and were calculated by the method of least squares. The computed correlation data is shown below. #### Correlation Data for Pressure and Length Changes | | | Error of | | Critic | cal r | |------------------|----------------------|-----------------|-----------------|--------|-------| | Cement
Number | Regression Equation | Estima te
Sy | Correlation (r) | 5% | 1% | | 1 | Y=0.2209-0.0006586 X | 0.0046 | 0.492 | 0.406 | 0.517 | | 2 | Y=0.4086-0.0013991 X | 0.0098 | 0.452 | 0,406 | 0.517 | | 3 | Y=0.5534-0.0011239 X | 0.0158 | 0.267 | 0.406 | 0.517 | X = Pressure in psi Y = Length change in percent The equations state that expansion decreases with increasing pressure. This is a surprising result and one that is contrary to the generally accepted rule of behavior. The coefficient of correlation for cements 1 and 2 is significant but not highly significant. The coefficient for cement 3 is not significant. The numerical value of the change in expansion with pressure within the limits of the specification tolerance is not large and is of no practical consequence for cements 1 and 2. It is possible that had a greater number of test results been available for study, the indicated trend would have been reversed. Table 11 Results of the Autoclave Test on Three Cements by Twelve Laboratories Length Changes in Percent | | | 1 | | Ceme | ent Number | ? | | |------------|--------------------|--------------|-------------|----------------|------------|--------------|---------| | | Test | | L | | 2 | 3 | | | Laboratory | Number | Indvdl. | Average | Indvdl. | Average | Indvdl. | Average | | A | 1 2 | .025
.033 | .0290 | 005
.000 | 0025 | .197
.221 | .2090 | | В | 1
2 | .031
.024 | .0275 | .004
.000 | •0020 | .235
.246 | •2405 | | C | 1 2 | •033
•036 | •0345 | 002
005 | 0035 | .234
.220 | .2270 | | D | 1
2 | .016 | .0180 | +.020
+.023 | 0215 | .221
.219 | .2200 | | E | 1
2 | .026
.035 | .0305 | 006
.006 | •0000 | .212
.250 | .2310 | | F | 1
2 | •030
•030 | •0300 | .010
.001 | .0010 | .210
.210 | .2100 | | G | 1 2 | .027
.029 | .0280 | .012
.008 | .0100 | •198
•190 | .1940 | | Н | 1 2 | .020
.020 | .0200 | 017
029 | 0230 | .233
.200 | .2165 | | I | 1 2 | .028
.024 | .0260 | .002
.009 | .0055 | .214
.232 | .2230 | | J | 1 2 | .020
.020 | .0200 | 010
010 | 0100 | .220
.230 | .2250 | | L | 1 2 | .027
.026 | .0265 | 008
008 | 0080 | .222
.222 | .2220 | | M | 1 2 | .026
.022 | .0240 | 013
020 | 0165 | .240
.234 | .2370 | | Average | <u>.1 — — — — </u> | .0262 | .0262 | -,0052 | 0055 | .2212 | .2212 | | Highest Va | lue | .0360 | .0345 | +.0120 | +.0100 | .2500 | .2405 | | Lowest Val | | .0160 | .0180 | 0290 | 0230 | .1900 | •1940 | | Range | | .0200 | .0165 | .0410 | .0330 | •0600 | .0465 | Table 12 Autoclave Tests on Three Cements by Twelve Laboratories which are within Control Limits | <u></u> | T | <u> </u> | | Ceme | ent Numbe | r | | |------------|--------------|--------------|-------------|------------------|----------------|---------------|----------------| | | Test | | l I | | 2 | | 3 | | Laboratory | Number | Indvdl. | Average | Ind v dl. | Average | Indvdl. | Average | | A | 1 2 | .025
.033 | .0290 | 005
.000 | 0025 | .197
.221 | 2090 | | В | 1 2 | .031
.024 | .0275 | .004 | .0020 |
.235
.246 | .2405 | | С | 1 2 | X
X | | 002
005 | 0035 | .234
.220 | .2270 | | D | 1 2 | X
X | | X
X | | .221 | .2200 | | E | 1 2 | .026
.035 | •0305 | 006
.006 | .0000 | .212
.250 | .2310 | | F | 1 2 | .030
.030 | .0300 | X | | .210
.210 | .2100 | | G | 1
2 | .027
.029 | .0280 | X
X | | X
X | | | Н | 1 2 | X | | X | | .233
.200 | .2165 | | I | 1 2 | .028
.024 | .0260 | X
X | | .214 | .2230 | | J | 1 2 | X
X | | 010
010 | 0100 | .220
.230 | .2250 | | L | 1
2 | .027
.026 | .0265 | 008
08 | 0080 | .222
.222 | .2220 | | M | 1 2 | .026
.022 | .0240 | X
X | | .240
.234 | .2370 | | Average | <u>L</u> | .0277 | | 0037 | | .2237 | | | Highest Va | lue | 0350 | | +.0060 | | .2500 | | | Lowest Val | | .0220 | | 0100 | | .2000 | | | Range | | .0130 | | .0160 | . 0028 | .0500 | 2501 | | UCL X | | | .03.52 | | +.0038
0112 | | .2504
.1970 | | LCL X | | | .0202 | | .0131 | | .0464 | | UCL R | | | 0 | | 0 | | 0 | | LCL R | , | <u></u> | <u> </u> | | | | | Table 13 Repeatability and Reproducibility of Autoclave Tests on Three Cements by Twelve Laboratories All Test Results Included in Computations | | | Cements | | |--|----------------------------|-----------------------------|----------------------------| | | 1 | 2 | 3 | | Repeatability Standard Deviation
Repeatability - Absolute
Repeatability-Percent of Avg. Value | 0.00319
0.00992
37.9 | 0.00475
0.01477
284.0 | 0.01284
0.03993
18.0 | | Reproducibility Standard Deviation
Reproducibility - Absolute
Reproducibility-Percent of Avg.
Value | 0.00490
0.01524
58.2 | 0.01050
0.03265
593.7 | 0.01282
0.03987
18.0 | | Average Length Change | 0.0262 | -0.0052 | 0.2212 | Repeatability and Reproducibility of Autoclave Tests on Three Cements All Out-of-Control Values Eliminated Before Computations of Values Given in the Table | | | Cements | | |--|----------------------------|-----------------------------|----------------------------| | | 1 | 2 | 33 | | Repeatability Standard Deviation
Repeatability - Absolute
Repeatability-Percent of Avg. Value | 0.00370
0.01236
44.6 | 0.00402
0.01463
395.4 | 0.01329
0.04186
18.7 | | Reproducibility Standard Deviation
Reproducibility - Absolute
Reproducibility-Percent of Avg.
Value | 0.00217
0.00725
26.2 | 0.00460
0.01674
452.4 | 0.00998
0.03145
14.1 | | Average Length Change | 0.0277 | -0.0037 | 0.2237 | Table 14 Analysis of Variance of the Data in Table 11 | Source of | Sum of | Degrees
of | Mean | F | Critic
Rat | io | |---------------------------|---------|---------------|-----------|-------|---------------|------| | Variance | Squares | Freedom | Squares | Ratio | 5% | 1% | | | | | | | | | | Between Cements | 0.72243 | 2 | 0.36122** | 9030 | 3.40 | 5.61 | | Between
Laboratories | 0.00217 | 11 | 0.00020** | 5.0 | 2.22 | 3.09 | | Between Tests | 0.00001 | 1 | 0.00001 | 0.25 | 4.26 | 7.82 | | Cements X
Laboratories | 0.00455 | 22 | 0.00021** | 5.0 | 2.05 | 2.79 | | Laboratories
X Tests | 0.00133 | 11 | 0.00012* | 3.0 | 2.22 | 3.09 | | Residual | 0.00104 | 24 | 0.00004 | | | | | Total | 0.73153 | 71 | | | | | | | | | | | | | The interaction Cements X Tests was not significant, and its sum of squares, and mean square, are therefore, pooled with the residual sum of squares in the above table. ^{**}Highly significant *Significant Table 15 Analysis of Variance Using Values Given in Table 12 | Source of
Variance | Sum of
Squares | Degrees
of
Freedom | Mean
Squares | Computed
F | Criti | cal F | |-------------------------|-------------------|--------------------------|-----------------|---------------|-------|-------| | Between Cements | .36069 | 2 | .18034 | 2254 | 3.35 | 5.49 | | Between
Laboratories | .00072 | 5 | .00014 | 1.75 | 2.57 | 3.79 | | Between Tests | .00033 | 1 | .00033 | 4.12 | 4.21 | 7.68 | | Residual | .00208 | 27 | .00008 | | | | | Total | •36382 | 35 | | | | | Note: All interactions are non-significant and their mean squares are therefore pooled with residual mean squares. # Conclusions With Respect to the Autoclave Tests 1. The autoclave expansion of cements 1 and 2 is very low and the limits of accuracy obtained in the tests of them is of academic interest only. Cement 3 has a higher autoclave expansion. The analysis shows that repeatability is about 0.04 percentage points with or without the elimination of results that are out of control. Reproducibility is shown to be about 0.04 percentage points when all results are included. It is reduced to 0.03 when out-of-control results are eliminated. In terms of the average test result, the reproducibility is 14 percent. 2. The reproducibility for a cement having an autoclave expansion of 0.50 percent (the specification limit) is a point of major interest. The data do not afford a good basis for estimating its value. If it should prove to be similar to that found for cement 3, that is about 14 percent, its absolute value would be 0.07 percentage points. ### Recommendation for Future Work If co-operative testing for autoclave expansion is planned in the future, it is believed that more significant results would be obtained if each laboratory were to make about four independent tests on different days on each cement. The cements should be selected to afford a range in expansion with at least one near the specified maximum of 0.50 percent. Results of the Chemical Analyses for Na₂O and K₂O and Statistical Analysis of the Data The determination of Na2O and K2O in portland cement is of more than ordinary interest to the California Division of Highways and to the cement manufacturers who furnish the product for State Highway projects. This is because the alkali content of the cement is rigidly restricted to not more than 0.6 percent by the State specification requirements. Because of the importance of these tests, the Materials and Research Department of the Division of Highways made a supplementary series of tests in addition to the tests performed in the co-operative series which is the subject of this report. In this section both series of tests will be discussed. Laboratories D and F did not participate in the co-operative tests for alkalies. The results of all of the tests are shown in Tables XXVI and XXVII. Table 16 is a tabulation showing a number of statistical measures appertaining to the data; Table 17 shows the computed repeatability and reproducibility of the tests, and Table 18 is a compilation showing the tests and laboratories within computed control limits. It was clearly evident from the data in the tables that reproducibility between laboratories in the determination of Na2O and K2O was not good unless steps were taken to eliminate results that were out of control. Since each laboratory made only two determinations, the validity of the computed control limits may be somewhat doubtful. It is also believed to be desirable to investigate the probability that the samples as distributed to the laboratories were in fact not alike. In order to obtain further information as to possible causes of variance between laboratories, the California Division of Highways made further tests of four samples of Cement No. 1 that had been prepared at the same time as the remainder but had not been distributed. For purposes of identification in this report the four samples are designated A, B, C and D. The program followed in this investigation was to make four independent determinations for Na2O and K2O of each sample on each of five days. Thus 8O determinations of Na2O and K2O were made in all. In these tests the Beckman DU spectrophotometer rather than the flame photometer specified in ASTM Designation C 114-51 T was used. Table 16 Sodium Oxide and Potassium Oxide in Portland Cement by Flame Photometer ASTM Designation: C228-49T Cements are Designated by the Number 1, 2, 3 | | Test L | | Na20 | | | K20 | | Na 20
1 | +.658
2 | K20 | |-------------------|---------------------------------------|--------------------------|------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | Lab | No. | 1 | 2 | 3 | 1 | 2 | 3 | | ~ | | | A | 1 2 | .42
.41 | | .56
.56 | | | .45
.46 | | .19
.20 | .86
.86 | | В | 1 2 | .40
.40 | | .57
.57 | .18 | | •45
•45 | | .19
.19 | .87
.87 | | С | 1 2 | .42
.40 | | • 54
• 54 | .20 | .12 | •45
•45 | •55
•53 | .17
.16 | .84
.84 | | E | 1 2 | .42 | .13 | .58
.58 | .18 | .11 | .48
.47 | •54
•55 | .20
.21 | •90
•89 | | G | 1 2 | .41
.42 | .10 | •54
•54 | .22 | .14 | .51
.48 | • 55
• 55 | .19
.20 | .88
.86 | | Н | 1 2 | •43
•44 | .10 | •57
•58 | .21
.21 | .12
.12 | •49
•49 | • 57
• 58 | .18
.18 | .89
.90 | | I | 1 2 | •43
•42 | .10 | • 58
• 57 | .22
.20 | .13
.12 | .51
.51 | •57
•55 | .19
.19 | .92
.91 | | J | 1 2 | .46
.46 | .11 | .62
.62 | .21 | .12 | •49
•50 | .60
.60 | .18
.19 | • 94
• 95 | | K | 1 2 | .43 | .10 | .60
.58 | .2l
.2l | .13 | .51
.50 | •57
•55 | .19
.17 | .94
.91 | | L | 1 2 | •35
•36 | .05 | •51
•54 | .19 | .11 | .48
.51 | .48
.50 | .12
.16 | .83
.88 | | M | 1 2 | •39
•40 | .10 | .53
.525 | .185 | .11 | • 44 | .51
.52 | .17
.17 | .82
.81 | | Max
Min
Rar | rage
imum
imum
ige
indard | .41
.46
.35
.11 | .10 | .56
.62
.51
.11 | .20
.22
.18
.04 | .12
.14
.10
.04 | .48
.51
.44
.07 |
.55
.60
.48
.12 | .18
.21
.12
.09 | .88
.95
.81
.14 | | Coe | eviation
efficient
Var. | .026:
nt 6.4 | , , | <u> </u> | 6.4 | | 5•3 | 5.5 | 10. | 7 4.4 | Table 17 Repeatability and Reproducibility of Na20 and K20 Analyses | Cement 1 | All Te | | Na20 | | 1 | K20 |) | |--|--|--------------------|--|-------|--|--|------| | 1 | | | | | | | | | Repeatability-Percent of Average 5.7 25.2 4.4 11.7 14.9 5.8 | | 1 | ک | 3 | | | 3 | | Reproducibility-Absolute Reproducibility-Percent of Avg. 19.9 53.0 5.2 18.5 23.5 16. Average Value .414 .102 .564 .200 .119 .47 Tests in Control Limits Repeatability-Absolute .027 .021 .016 .027 .015 .02 Reproducibility-Percent of Average 6.5 20.7 2.9 13.1 12.6 4. Reproducibility-Absolute .028 .019 .029 .021 .017 .02 Reproducibility-Percent of Avg. 6.8 18.5 5.1 10.1 14.6 4. Average Value .415 .104 .570 .206 .119 .48 All Tests All Tests Na20+.658 K20 Cement No.1 Repeatability-Absolute .028 .038 Repeatability-Percent of Average 5.1 Reproducibility-Absolute .094 .122 Reproducibility-Percent of Avg. 17.3 13.8 | | | | .025 | | .018 | .025 | | Tests in Control Limits Repeatability-Absolute Reproducibility-Percent of Average 19.9 53.0 5.2 18.5 23.5 16.5 23.5 13.5 16.5 23.5 16.5 23.5 13.5 16.5 23.5 16.5 23.5 13.5 16.5 23.5 13.5 16.5 23.5 13.5 16.5 13.5 | | | | | | | 5.2 | | Tests in Control Limits Repeatability-Absolute Reproducibility-Percent of Average Average Value All Tests Na20+.658 K20 Cement No.1 Repeatability-Absolute All Tests Repeatability-Absolute All Tests Repeatability-Absolute All Tests Na20+.658 K20 Cement No.1 Repeatability-Absolute All Tests Na20+.658 K20 Cement No.1 Repeatability-Absolute Repeatability-Absolute Repeatability-Absolute Repeatability-Absolute Repeatability-Absolute Reproducibility-Absolute Reproducibility-Percent of Average Repro | | | .054 | | | | .079 | | Tests in Control Limits Repeatability-Absolute | | | | | | 23.5 | 16.6 | | Repeatability-Absolute .027 .021 .016 .027 .015 .02 Repeatability-Percent of Average 6.5 20.7 2.9 13.1 12.6 4. Reproducibility-Absolute .028 .019 .029 .021 .017 .02 Reproducibility-Percent of Avg. 6.8 18.5 5.1 10.1 14.6 4. Average Value .415 .104 .570 .206 .119 .48 All Tests Na20+.658 K20 Cement No.1 Cement No.3 Repeatability-Absolute .028 .038 .038 .038 Reproducibility-Absolute .094 .122 .122 .13.8 Reproducibility-Percent of Avg. 17.3 .13.8 | Average Value | · 414 | •T05 | • 564 | .200 | .119 | .478 | | Repeatability-Absolute .027 .021 .016 .027 .015 .02 Repeatability-Percent of Average 6.5 20.7 2.9 13.1 12.6 4. Reproducibility-Absolute .028 .019 .029 .021 .017 .02 Reproducibility-Percent of Avg. 6.8 18.5 5.1 10.1 14.6 4. Average Value .415 .104 .570 .206 .119 .48 All Tests Na20+.658 K20 Cement No.1 Cement No.3 Repeatability-Absolute .028 .038 .038 .038 Reproducibility-Absolute .094 .122 .122 .13.8 Reproducibility-Percent of Avg. 17.3 .13.8 | Tests in Cont | rol Li | mita | | | | | | Repeatability-Percent of Average 6.5 20.7 2.9 13.1 12.6 4. Reproducibility-Absolute .028 .019 .029 .021 .017 .02 Reproducibility-Percent of Average 6.8 18.5 5.1 10.1 14.6 4. Average Value .415 .104 .570 .206 .119 .48 All Tests Na20+.658 K20 Cement No.1 Cement No.3 Repeatability-Absolute .028 .038 .038 Reproducibility-Absolute .094 .122 Reproducibility-Percent of Avg. 17.3 13.8 | Repeatability-Absolute | | | .016 | .027 | .015 | .020 | | Reproducibility-Absolute .028 .019 .029 .021 .017 .02 .028 .019 .029 .021 .017 .020 .029 .021 .017 .020 .020 .020 .021 .017 .020 .020 .020 .020 .021 .017 .020 .020 .020 .020 .020 .020 .020 .02 | | | | | | | 4.1 | | Reproducibility-Percent of Avg. 6.8 18.5 5.1 10.1 14.6 4. Average Value .415 .104 .570 .206 .119 .48 All Tests Na20+.658 K20 Cement No.1 Cement No.1 Cement No.3 Repeatability-Absolute Reproducibility-Absolute Reproducibility-Absolute Reproducibility-Percent of Avg. .094 1.22 13.8 | Reproducibility-Absolute | | | | | | .024 | | All Tests Na20+.658 K20 | Reproducibility-Percent of Avg. | | | | | | 4.9 | | All Tests Na20+.658 K20 | A | 136 | 701 | 5770 | 00/ | 110 | 1.87 | | Repeatability-Absolute .028 .038 Repeatability-Percent of Average 5.1 4.3 Reproducibility-Absolute .094 .122 Reproducibility-Percent of Avg. 17.3 13.8 | | | • 104 | •7/0 | .200 | •117 | • 40 | | Repeatability-Percent of Average 5.1 4.3 Reproducibility-Absolute .094 .122 Reproducibility-Percent of Avg. 17.3 13.8 | | sts
Na20 | +.658 | K20 | Na 20 | +.658 | K20 | | Repeatability-Percent of Average 5.1 4.3 Reproducibility-Absolute .094 .122 Reproducibility-Percent of Avg. 17.3 13.8 | | sts
Na20 | +.658 | K20 | Na 20 | +.658 | K20 | | Reproducibility-Percent of Avg. 17.3 13.8 | All Te | sts
Na20 | +.658
ent No | K20 | Na 20 | +.658
ent No | K20 | | | | sts
Na20
Cem | +.658
ent No | K20 | Na 20 | +.658
ent No
.038
4.3 | K20 | | Average Value 1 .5/6 .880 | All Te Repeatability-Absolute Repeatability-Percent of Average Reproducibility-Absolute | sts
Na20
Cem | +.658
ent No
.028
5.1
.094 | K20 | Na20
Cem | +.658
ent No
.038
4.3 | K20 | | average value | All Te Repeatability-Absolute Repeatability-Percent of Average | sts
Na20
Cem | +.658
ent No
.028
5.1
.094
17.3 | K20 | Na20
Cem | +.658
ent No
.038
4.3
.122 | K20 | | | All Te | sts
Na20 | +.658
ent No | K20 | Na 20 | +.658
ent No | K 2 | | | All Te
Repeatability-Absolute
Repeatability-Percent of Average
Reproducibility-Absolute
Reproducibility-Percent of Avg. | sts
Na20
Cem | +.658
ent No
.028
5.1
.094 | K20 | Na20
Cem | +.658
ent No
.038
4.3 | K20 | | | All Te
Repeatability-Absolute
Repeatability-Percent of Average
Reproducibility-Absolute
Reproducibility-Percent of Avg. | sts
Na20
Cem | +.658
ent No
.028
5.1
.094
17.3 | K20 | Na20
Cem | +.658
ent No
.038
4.3
.122 | K20 | | Tests in Control Limits | Repeatability-Absolute Repeatability-Percent of Average Reproducibility-Absolute Reproducibility-Percent of Avg. Average Value Tests in Cont | sts
Na20
Cem | +.658 ent No .028 5.1 .094 17.3 .546 | K20 | Na20
Cem | +.658
ent No
.038
4.3
.122
13.8
.880 | K20 | |
Repeatability-Absolute .033 .024 | Repeatability-Absolute Repeatability-Percent of Average Reproducibility-Absolute Reproducibility-Percent of Avg. Average Value Tests in Cont Repeatability-Absolute | sts
Na20
Cem | +.658
ent No
.028
5.1
.094
17.3
.546 | K20 | Na20
Cem | +.658
ent No
.038
4.3
.122
13.8
.880 | K20 | | Repeatability-Absolute Repeatability-Percent of Average 6.1 033 2.8 | Repeatability-Absolute Repeatability-Percent of Average Reproducibility-Absolute Reproducibility-Percent of Avg. Average Value Tests in Cont Repeatability-Absolute Repeatability-Percent of Average | sts
Na20
Cem | +.658
ent No
.028
5.1
.094
17.3
.546
mits
.033
6.1 | K20 | Na20
Cem | +.658
ent No
.038
4.3
.122
13.8
.880 | K20 | | Repeatability-Absolute Repeatability-Percent of Average Reproducibility-Absolute .033 6.1 2.8 .063 | Repeatability-Absolute Repeatability-Percent of Average Reproducibility-Absolute Reproducibility-Percent of Avg. Average Value Tests in Cont Repeatability-Absolute Repeatability-Percent of Average Reproducibility-Absolute | sts
Na20
Cem | +.658
ent No
.028
5.1
.094
17.3
.546
mits
.033
6.1 | K20 | Na20
Cem | +.658
ent No
.038
4.3
.122
13.8
.880 | K20 | | Repeatability-Absolute Repeatability-Percent of Average Reproducibility-Absolute Reproducibility-Percent of Avg. 8033 6.1 2.8 0063 7.2 | Repeatability-Absolute Repeatability-Percent of Average Reproducibility-Absolute Reproducibility-Percent of Avg. Average Value Tests in Cont Repeatability-Absolute Repeatability-Percent of Average | sts
Na20
Cem | +.658
ent No
.028
5.1
.094
17.3
.546
mits
.033
6.1
.030
5.5 | K20 | Na20
Cem | +.658
ent No
.038
4.3
.122
13.8
.880 | K20 | Table 18 Table Showing Laboratories and Tests Within Control Limits | | X Ir | ndi ca | ates | a Tes | st ir | 1 Con | trol | | |-------------------------------|------------|------------|---------|-------|------------|---------|---------|----------------| | | | Na 20 | | , | K20 |) | Na20+.6 | 58 K20
lent | | Participating
Laboratories |) (
] | Cemer
2 | it
3 | ۱ , ۱ | Cemer
2 | 1t
3 | 1 | 3 | | | v | | v | Х | | | Х | Х | | A | X | X | X | ^ | | | | | | В | Х | | X | | | | | X | | С | Х | | | X | X | | X | | | E | Х | | | | X | X | х | Х | | G | X | X | | Х | | | x | X | | Н | | X | X | Х | X | X | | Х | | I | Х | X | X | Х | X | | х | | | J | | X | | Х | X | X | | | | K | X | X | | Х | X | | X | | | L | | | | X | X | | | | | M | | X | | | X | | | | | | | | | | | | | | All determinations were made by the same analyst. A period of six weeks intervened between the first and second rounds. The remainder were completed in less than two weeks. The results of the tests are shown in Table 19(A) and Table 19(B). An inspection of the data shows at once that the results for Na2O in the first round were considerably higher than in any succeeding round. There is no known reason for the high results in the first round. By means of control charts it was determined that all of the values obtained for Na2O in the first round were out of control which means that the variation from the other determinations is due to assignable causes. When Round 1 is omitted, a few of the remaining results are out of control but by a very small margin. When these results are eliminated the remainder are in control. It makes little difference in the examination to follow whether or not all of the results of Rounds 2 to 5 are included. All of the data are considered to be good for the reason that the numerical value of the results is low and determinations cannot be made beyond two significant figures. However, since the control charts for all results in Rounds 2 to 5 inclusive indicate that there are assignable causes of variation, the results of an analysis of variance are of interest. A three factor analysis is shown in Table 21. The results show that there are at least four factors (three main factors and an interaction) that are contributing significantly to the observed variance. One of these factors is a difference in the samples themselves. The probable magnitude of variations in the individual samples distributed to the co-operating laboratories is discussed below. The analysis of variance indicates that a significant difference exists between the amounts of Na2O in the samples, and this is confirmed by the computations of the 95 percent confidence limits in Table I. If it is assumed that the varying amounts of Na2O in the samples distributed approximate a normal distribution, and that the four samples tested in this study were representative of the universe of samples, the standard deviation of the average value of each of the samples can be computed. This value is 0.0082. The probable distribution of Na2O in the universe of samples is as follows: Average Na20 + 0.0082 68 percent Average Na20 + 0.0164 95 percent Average Na20 + 0.0246 99.7 percent Table 19(A) Results of Analyses of Portland Cement for Na20 Using the Beckman DU Spectrophotometer | | (Round) | , | *************************************** | Na ₂ 0 | | | (Round) | ļ. ———— | | 20 | | | |-------------|---|------------------------------|---|------------------------------|------------------------------|-------------------------------------|--|------------------|----------------|---------------|------|---| | Smpl. | Day | | Te | st Numk | ber | | Day | | | Numb | ner | ······································ | | 1 | Tested | 1 | 2 | 3 | 1 4 | Avg. | Tested | 1 | 2 | 3 1 3 | 4 | Avg. | | A | 2
3
4
5 | 0.45
0.45
0.42
0.42 | 0.44
0.44
0.43
0.41 | 0.44
0.44
0.42 | 0.44
0.44
0.42
0.42 | 0.442
0.442
0.422
0.418 | 1 | | <u> </u> | | 0.47 | | | " | Avg. | | 0.430 | 0.4.30 | 0.4.30 | 0.431 | Avg. | | | | | 0.472 | | | Standar
Standar
95% con | d Devia | ation
r of me | ean | (| 0.0126
0.0032
0.438
0.424 | Standard
Standard
95% con: | d erro | or of | mean | C | 0.472
0.0052
0.0026
0.481
0.464 | | В | 2
3
4
5 | 0.46
0.45
0.43
0.44 | 0.43
0.43
0.46 | 0.45
0.45
0.42
0.45 | 0.45
0.43
0.42
0.45 | 0.452
0.440
0.425
0.450 | 1. | 0.47 | 0.47 | 0.47 | | 0.472 | | | Avg. | 0.445 | 0.442 | 0.442 | 0.438 | 0.442 | Avg. | | | | | 0.472 | | | Standar
Standar
95% con | d error | r of me | | (| 0.0132
0.0033
0.449
0.435 | Standard
Standard
95% cont | d erro | r of | mean | C |).0052
).0026
).481
).464 | | | 2 | 0.42 | 0.43 | 0.41 | ببالكنا كفالناه كفنان | 0.418 | 1 | 0.46 | 0.47 | 0.47 | | 0.468 | | C | 3 4 5 | 0.44
0.42
0.45 | 0.46
0.42
0.45 | 0.43
0.43
0.43 | 0.43
0.42
0.44 | 0.440
0.422
0.442 | | U • •• | V • ** / | V 8+++ | | ٠ | | | Avg. | | | 0.425 | 0.425 | 0.431 | Avg. | | | | | 0.468 | | | Standard
Standard
95% con | d error
Ifiden c e | r of me
e limit | ts: | (
(| 0.0143
0.0036
0.438
0.423 | Standard
Standard
95% cont | d erro
fidenc | r of
e lim | mean
its: | 0 |).00 52
).0026
).476
).459 | | D | 2
3
4
5 | 0.41
0.42
0.46
0.43 | 0.43
0.43
0.43 | 0.43
0.41
0.43
0.41 | 0.42
0.41
0.42
0.41 | 0.418
0.418
0.435
0.420 | 1 | 0.46 | 0.47 | 0.46 | 0.45 | 0.460 | | | Avg. | 0.430 | 0.425 | | | | Avg. | <u> </u> | | | | 0.460 | | | Standar
Standar
95% con | d error | r of me | | (| 0.0134
0.0033
0.430
0.415 | Standard
Standard
95% coni | d erro
fidenc | r of
e lin | mean
nits: | | 0.0141
0.0070
0.482
0.438 | | | Grand A
Standar | | | | | 0.432
0.0148 | Grand Av
Standard
tests | d devi | ation | ı, all | L C | 0.468
0.0075 | | | Standard
95% con
Standard
Standard | afidence
rd devia | e limit
ation,s
ation o | ts: 0.
smpl.av | .435, vgs. | 0.0018
0.428
0.0082
0.0127 | Standard
95% con:
Standard
sample | fidenc | e lin
ation | nits: | (| 0.0019
0.472
0.464
0.0063 | Results of Analyses of Portland Cement for K20 Using the Beckman DU Spectrophotometer | | | | | K20 | | | | | | | |--------|---|--|---|---|---|--|--|--|--|--| | | Day | | ······································ | Test Num | ber | | | | | | | Sample | Tested | 1 | 2 | 3 | 4 | Avg. | | | | | | A | 1
2
3
4
5
Avg. | 0.21
0.21
0.21
0.19
0.20
0.204
rd deviat | 0.21
0.20
0.20
0.20
0.19
0.200 | 0.20
0.19
0.20
0.19
0.19 | 0.19
0.22
0.21
0.18
0.20
0.20 | 0.202
0.205
0.205
0.190
0.195
0.200 | | | | | | | | rd error | of mean
limits | | 0.204 and | 0.0022
1 0.195 | | | | | | В | 1
2
3
4
5
Avg. | 0.22
0.19
0.21
0.20
0.20
0.204 | 0.20
0.19
0.21
0.20
0.21
0.202 | 0.21
0.19
0.21
0.21
0.19
0.202 | 0.19
0.19
0.20
0.21
0.20
0.198 | 0.205
0.190
0.208
0.205
0.200
0.201 | | | | | | | Standa | rd deviat
rd error
nfidence | tion
of mean
limits | | 0,206 ai | | | | | | | С | 1
2
3
4
5
Avg | 0.21
0.20
0.22
0.19
0.20 | 0.20
0.21
0.22
0.19
0.20 | 0.19
0.19
0.21
0.20
0.19 | 0.19
0.20
0.21
0.20
0.20 | 0:198
0:200
0:215
0:195
0:198
0:201 | | | | | | |
Standa
Standa | rd deviat
rd error
nfidence | ion | | | 0.0100
0.0022
nd 0.196 | | | | | | D | 1
2
3
4
5 | 0.21
0.18
0.20
0.20
0.20 | 0.21
0.20
0.21
0.20
0.19 | 0.19
0.19
0.19
0.20
0.20 | 0.19
0.18
0.20
0.19
0.20 | 0.200
0.188
0.200
0.198
0.198 | | | | | | | Standa | 0.704 0.000 0.701 0.702 | | | | | | | | | | | Grand
Standa
Standa
95% co
Standa | Average, rd deviatord error onfidence and deviators ages | all tes
tion, al
of mear
limits | l tests | 0.202 a | 0.200
0.0095
0.0011
nd 0.198 | | | | | Table 20 Tabulation of the Data on Control Limits | Analysis | Test
Included | Σ̈́ | $\overline{\mathbb{R}}$ | UCL | LCL_x | UCLr | $\mathtt{LCL_r}$ | |-------------------|--|--------------------------------------|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------| | Na20 | Al to A5
Bl to B5
Cl to C5
Dl to D5 | 0.4395
0.4480
0.4380
0.4300 | 0.010
0.014
0.018
0.024 | 0.4468
0.4582
0.4511
0.4475 | 0.4322
0.4378
0.4249
0.4125 | 0.0228
0.0319
0.0411
0.0548 | 0000 | | Na ₂ 0 | A ₂ to A ₅
B ₂ to B ₅
C ₂ to C ₅
D ₂ to D ₅ | 0.4312
0.4419
0.4306
0.4225 | 0.010
0.015
0.020
0.025 | 0.4385
0.4528
0.4452
0.4353 | 0.4239
0.4310
0.4160
0.4097 | 0:0228
0:0342
0:0456
0:0399 | 0 0 0 | | Na ₂ O | (A2-D5) | 0.4316 | 0.0175 | 0.4444 | 0.4188 | 0.0399 | 0 | | Na ₂ O | (A2-D5) | 0.4332 | 0.0180 | 0.4463 | 0.4201 | 0.0411 | 0 | . Table 21 Analysis of Variance of the Data Reported in Rounds 2 to 5 | Source of Variance | Sums of
Squares | D.F. | Mean
Squares | F
Ratio | Critic
5% | cal F | |--------------------------------------|--------------------|--------|-----------------|-----------------|--------------|----------| | Dource of variance | Degaares | 20010 | Dquarob | 144.01.0 | | | | Between Days Tested (Rounds) | 0.00066 | 3 | 0.00022 | 3.14* | 2.81 | 4.24 | | Between Samples Between Test Numbers | 0.00303 | 3
3 | 0.00101 | 14.42*
3.86* | 2.81
2.81 | 4.24 | | Days Tested X smpls. (Interaction) | 0.00600 | 9 | 0.00067 | 9.57* | 2.09 | 2.82 | | Residual | 0.00334 | 45 | 0.00007 | | | | | Total | 0.01384 | 63 | | | | <u> </u> | ^{*}Indicates that the source of variance is significant. The possibility exists therefore, that among the 13 samples distributed to the co-operating laboratories, two may have differed by as much as 0.05. It is more probable that the extreme difference was less than 0.02. The evidence confirms that of the analysis of variance, namely, that the individual samples as prepared were not exactly alike and that part of the variance between laboratories was due to this cause. It is apparent that precautions more extreme than those employed in the preparation of the samples of the 1956 co-operative series must be taken if variance in results due to non-uniformity of samples is to be avoided. Each laboratory is concerned with the problem of determining at intervals whether its results are in control. The data of this report indicate that at least 20 tests preferably spaced over an interval of several days, should be made on the same sample and the results analyzed for statistical control. It is obvious that the sample selected for test should be prepared carefully to obtain as high a degree of uniformity as possible. If such a schedule were followed by all laboratories, it is believed that reproducibility would be improved substantially. The data of Rounds 2 to 5 inclusive afford a means of evaluating the precision of the determination of Na2O since all of the results are in control or nearly so. The statistical measures of precision have already been defined in previous paragraphs. The precision of a single measurement of Na2O using the data of Rounds 2 to 5 is 0.0148 and the corresponding coefficient of variation is 3.43 percent. The precision using only those values in control is 0.0127 and the coefficient of variation is 2.93. The repeatability of the test is 0.0261 or 6.05 percent. These values may be compared with some others from the literature which are shown in the table below. Na₂0 | Method | Number of
Determinations | Average
Value | Standard
Deviation | Coefficient
of
Variation | |-------------------------|-----------------------------|-------------------------|--------------------------------------|--------------------------------| | J. Lawrence
Smith(6) | 7
6
6
Average | 0.127
0.255
0.577 | 0.0170
0.0138
0.0383
0.0230 | 13.38
5.41
6.63 | Table continued on next page K20 | Method | Number of
Determinations | Average
Value | Standard
Deviation | Coefficient
of
Variation | |-----------------------------|-----------------------------|---|---|--------------------------------------| | J. Lawrence
Smith (6) | 7
6
6 | 0.301
0.640
1.045 | 0.0147
0.0110
0.0164 | 4.88
1.72
1.57 | | | Average | | 0.0140 | | | | | Na ₂ O | | | | Perkin-Elmer
Model 52(7) | 666666 | 0.212
0.618
0.245
0.375
0.075 | 0.007
0.015
0.013
0.017
0.005 | 3.30
2.43
5.31
4.53
6.67 | | Average | | | 0.011 | | | | | K20 | | | | Perkin-Elmer
Model 52(7) | 6
6
6
6 | 0.508
0.127
0.222
0.010
0.257 | 0.023
0.011
0.007
0.000
0.011 | 4.53
8.66
3.15
0.00
4.28 | | | Average | | 0.010 | | | | | Na ₂ O | | | | Beckman
This report | 64 | 0.432 | 0.0148 | 3.43 | | | | K20 | | | | Beckman
This report | 80 | 0.200 | 0.0095 | 4.74 | It is believed that the precision of the method cannot be much improved over the precision found in these tests. What should be and probably can be improved, is the variation between laboratories. The data for K2O are much more concordant than those for Na2O. Of the 2O subgroup averages for K2O, only two were out of control and those in only small amounts. The precision calculated on the basis of all results is expressed as: Standard deviation Coefficient of Variation 0.0095 4.74 per cent It is of interest now to compare the results obtained in the present tests with those obtained by all of the laboratories in the co-operative series. The comparison is summarized below. #### Co-operative Tests | • | Na 20 | K20 | |--|----------------------------------|----------------------------------| | Average Value
Standard deviation (Between Laboratories)
Repeatability (Tests in Control)
Reproducibility (Tests in Control) | 0:414
0.026
0.027
0.028 | 0:200
0:013
0:027
0:021 | | California Division of High | ways | | | Averages for 4 Samples:
All Rounds
Rounds 2 to 5 | 0.439
0.432 | 0.200 | | Standard Deviation (Within one Laboratory) Repeatability | 0.0148
0.026 | 0:0095
0:023 | It will be noted that the values for repeatability are nearly the same in both series. The values therefore, appear to be well established. The fact that the standard deviation for all laboratories is much higher than that obtained in the California Division of Highways' supplementary tests appears to be merely a reflection of the known variance between laboratories as indicated by the reproducibility. It will be noted that the average value for Na2O obtained by the California Division of Highways in the supplementary series (excluding Round 1) is 0.018 higher than the average of all laboratories. The Beckman DU spectrophotometer was used in the supplementary series and the Perkin-Elmer flame photometer in the co-operative series. Tests have since been made in the California Division of Highways laboratory to determine the probability of a difference in results between the two instruments. The original Sample 1 of the co-operative series assigned to the California Division of Highways was used for this purpose. The results are as follows: | | | Na ₂ O | K ₂ 0 | | | |---------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--| | | Beckman | Perkin-
Elmer | Beckman | Perkin
Elmer | | | | 0.43
0.44
0.42
0.43
0.44 | 0.42
0.40
0.41
0.42
0.42 | 0.20
0.20
0.19
0.19
0.20 | 0.20
0.20
0.21
0.20
0.20 | | | Average | 0.432 | 0.412 | 0.196 | 0.202 | | The average results are almost identical with those obtained in the supplementary tests and the original cooperative series respectively. The data therefore, confirm the indication that the Beckman instrument gives results for Na2O that are higher than those obtained with the Perkin-Elmer instrument and that for cement No. 1, the differential is about 0.02 percentage point. The results of other investigators confirm this finding.(7) ### Conclusions with Respect to the Chemical Analyses for Na₂O and K₂O 1. On the basis of the data provided by the co-operative series (one subgroup of two individuals from each laboratory), it was concluded that most of the laboratories were able to repeat their results rather closely. The reproducibility of the tests was not good. Since the determination of the alkali content was considered to be an important one, a supplemental series of tests was performed by the California Division of Highways. This supplemental series confirmed the values for repeatability as computed in the original series. The results also indicated that the samples as prepared for distribution to the co-operating laboratories were probably not
identical in content of Na₂O. 2. A by-product of the investigation was that determinations for Na₂O with the Beckman instrument tend to be significantly higher than those obtained with the Perkin-Elmer instrument. Probably the most important finding was the need of individual laboratories to make sufficient repeat tests to permit establishing control limits so that results that are not in control can be eliminated. Unless this is done, it is idle to attempt to compute reproducibility between laboratories as a means of establishing tolerances in specification limits. 3. It was concluded that further work should be done on this test and it is anticipated that such work will be started in the fairly near future. It is also anticipated that future work will include alkali determinations on a standard sample in order that accuracy can be estimated as well as precision. Analysis of the Tests for Fineness by the Turbidimeter and the Air Permeability Apparatus The complete results of these tests are shown in Table III. Table 22 shows the computed control limits for two tests and Table 23 shows the results of the computations for repeatability and reproducibility. Conclusions With Respect to the Turbidimeter and Air Permeability Tests 1. A larger proportion of the turbidimeter tests were in control limits than in the air permeability test. The repeatability and reproducibility of the air permeability results were considerably better than those obtained by the use of the turbidimeter. | Turbidimeter Tests | | | | | | | | | | |--------------------|---------------------------------------|------------------------|--------|--------|-------|-----|--|--|--| | | Grand Average Computed Control Limits | | | | | | | | | | Cement | Average | Range | Avera | | Range | R | | | | | Number | X | R. | UCL | LCL | UCL | LCL | | | | | 1 | 1549.6 | 19.5 | 1586.3 | 1512.9 | 63.8 | 0 | | | | | 2 | 1764.9 | 23.2 | 1808.5 | 1721.3 | 75.8 | 0 | | | | | 3 | 1895.4 | 22.4 | 1937.5 | 1853.3 | 73.2 | 0 | | | | | | A | Air Permeability Tests | | | | | | | | | 1 | 2795.8 | 14.1 | 2822.3 | 2769.3 | 46.1 | 0 | | | | | 2 | 2948.3 | 22.2 | 2990.0 | 2906.6 | 72.5 | 0 | | | | | 3 | 3820.2 | 17.0 | 3852.2 | 3788.2 | 55.5 | 0 | | | | Table 23 Repeatability and Reproducibility of the Turbidimeter and Air Permeability Fineness Tests All Tests ### Turbidimeter Tests | | Ceme | nt Num | nber | | | | |--|---------------|---------------|--------------|--|--|--| | | 1 | 2 | 3 | | | | | Repeatability - Absolute
Repeatability - Percent of Average | 47.7
3.1 | 61.1 | 3.1 | | | | | Reproducibility-Absolute Reproducibility - Percent of Avg. | 161.7
10.4 | 214.1
12.1 | | | | | | Air Permeability Test | s | | | | | | | Repeatability - Absolute
Repeatability - Percent of Average | 37.2
1.3 | 56.5
1.9 | | | | | | Reproducibility-Absolute
Reproducibility-Percent of Average | 149.7
5.4 | 165.4
5.6 | 359.7
9.4 | | | | | <u>Tests in Control</u>
Turbidimeter Tests | | | | | | | | Repeatability - Absolute
Repeatability - Percent of Average | 47.3
3.0 | 54.4
3.1 | 72.1
3.8 | | | | | Reproducibility-Absolute
Reproducibility-Percent of Average | 78.9
5.1 | 70.1
4.0 | 101.6
5.3 | | | | | Air Permeability Tests | | | | | | | | Repeatability - Absolute
Repeatability - Percent of Average | 30.1
1.07 | 60.8
2.06 | 19.8
0.52 | | | | | Reproducibility-Absolute
Reproducibility-Percent of Average | 39.2
1.40 | 76.7
2.6 | 170.2
4.5 | | | | #### Analysis of the Tests for Time of Setting by Gillmore Needles The results of these tests are shown in Table IV. Table 24 shows the computed control limits for the results of the test, and Table 25 is a record of the computations for repeatability and reproducibility. These latter computations were not made for the values that were within control limits on cements No. 2 and No. 3. ### Conclusions with Respect to the Time of Setting Test - 1. Approximately 42 percent of the determinations for initial and final set are out of control. - 2. The repeatability and reproducibility calculated for the values in control on one cement are not good. Table 24 Computed Control Limits for Averages (\overline{X}) and Ranges (R) for the Time of Setting by Gillmore Needles Time in Minutes Initial Set - All Tests | | Grand | Average | Comp | | | Limits | |--------|------------------|---------|---------|--|--------------|----------| | Cement | Ave <u>r</u> age | Range | Avera | | Rang | | | Number | X | R | UCL | LCL | UCL | LCL | | 7 | 232.4 | 20.0 | 270.0 | 194.8 | 65.3 | 0 | | 2 | 289.3 | 13.8 | 315.2 | 263.4 | 45.1 | ŏ | | 2 | 153.8 | 12.7 | 177.7 | 129.9 | 41.5 | ŏ | | | 1))•0 | ±~•! | -11-1 | ±~/•/ | 42.0 | | | | | | | | | <u> </u> | | | | | | | | | | | Fi | nal Set | - All T | ests | <u>,</u> | | | | | | | [| | | | 1 | 377.6 | 23.5 | 421.8 | 333.4 | 76.8 | 0 | | 2 | 451.2 | 19.5 | 487.9 | 414.5 | 63.7 | 0 | | 3 | 284.9 | 19.4 | 321.4 | 248.4 | 63.4 | | | | | | | | <u> </u> | LJ | ### Laboratories and Tests Within Control Limits X Indicates a Test in Control | | TIMI | acco c | | T11 OC110 | | | |---------------------------------|-------------|--------|----------|------------------|-------------|----------| | | Īni | tial S | et | <u>F</u> | inal Se | | | | | Cement | | | , | | | Laboratory | 1 | 2 | 3 | 1 | 2 | 3 | | Bagara a doz 1 | | | | | | | | ۸ | | X | Х | l x | X | X | | A
B
C | יד | A | Δ. | X | 11 | 22 | | B | X
X | | 47 | 1 1 | v | | | | X. | | X | | X | | | D | X | X | Х | X | X | | | E | | | | X
X
X
X | X | X | | F | X | | | X | | | | Ğ | Х | | 1 |) X. | X | | | D
E
F
G
H
I
J | X
X
X | X | x | | X
X
X | | | 1 1 | | | X
X | X | Х | X | | <u> </u> | v | | X | y X | | X | | ์ กั | A | | _ A | X | | X | | | X
X
X | ** | 37 | ^ ` | | 4 | | · L | X | X | X | 7.7 | 37 | | | M | Х | | X | Х | Х | | | | | | <u> </u> | | | <u> </u> | Table 25 Repeatability and Reproducibility of the Time of Setting Tests by Gillmore Needles Time in Minutes | All Tests - Initial Set | | | | | | | | | |--|---------------|---------------|---------------|--|--|--|--|--| | | Cement | | | | | | | | | | 1 | 2 | 3 | | | | | | | Repeatability - Absolute Repeatability - Percent of Average | 60.8
26.2 | 36.4
12.6 | 32.0
20.8 | | | | | | | Reproducibility - Absolute Reproducibility - Percent of Average | 97.3
41.9 | 122.0
42.2 | 75.1
48.9 | | | | | | | All Tests - Final | Set | | | | | | | | | Repeatability - Absolute Repeatability - Percent of Average | 60.0
15.9 | 50.6
11.2 | 56.4
19.8 | | | | | | | Reproducibility - Absolute Reproducibility - Percent of Average | 107.2
28.4 | 128.7
28.5 | 147.8
51.9 | | | | | | | Tests in Control - In | itial Se | t | • | | | | | | | Repeatability - Absolute Repeatability - Percent of Average | 49.6
21.5 | | | | | | | | | Reproducibility - Absolute Reproducibility - Percent of Average | 66.9
29.0 | | | | | | | | | Tests in Control - F | inal Set | <u> </u> | 1 | | | | | | | Repeatability - Absolute
Repeatability - Percent of Average | 67.0
21.5 | | | | | | | | | Reproducibility - Absolute
Reproducibility - Percent of Average | 74.9
19.6 | | | | | | | | #### The Normal Consistency Test A complete record of the results of the normal consistency test is given in Table I. Each laboratory performed duplicate tests and nearly all the laboratories arrived at the same result for each of its own duplicate tests. It is easily seen that when little or no difference is observed between the members of a subgroup of tests conducted by two or more laboratories, but an appreciable difference exists between the averages of the subgroups tested by the different laboratories, an assignable cause of variation is present. It is concluded from the data in Table I that assignable causes of variation are present to account for the observed differences in the results obtained by the several laboratories. The differences between some of them is so small however, as to seem to be negligible. In connection with the above results, it is interesting to speculate about the results, if a larger number of tests were made, and precautions taken to prevent the entry of psychological bias in the experiments (8). In an experiment of this kind an operator would be furnished with about four samples per day for, say, 5 or 10 days. Suitable precautions would be taken to assure that the operator could not possibly know that the samples were duplicates. It is believed by some authorities that any chance for a psychological bias should always be eliminated where it is at all possible to do so. In looking for an explanation of the observed differences, one of the most probable causes might be differences in room temperatures and relative humidites. Penetration of Plunger C in a Paste Made with Percentage of Water Designated by the California Division of Highways The results of this test are shown in Table II. There are obviously assignable causes for the variation observed. There are no data available to find out what these causes are. ### Time of Setting by Vicat Needle In this series of tests, the duplicate determinations were made on different days by all of the co-operating laboratories. The longest interval between duplicate tests was about 6 weeks, by laboratory M on all three tests. It will be observed that the difference between two of the duplicate tests (Cements 1 and 2) was the greatest reported by any of the laboratories. It is of interest to note however, that their results on Cement No. 3 were identical regardless of the time interval that apparently affected the behavior of the other two cements. The only statistical computations made on these data are shown below. There were three
laboratories out of control on Cement No. 1 and five laboratories out of control on Cement No. 2. Control limits were not computed for Cement No. 3. Table 26 is a record of the statistical computations made. The amount of water used in this test was designated by the California Division of Highways. # Conclusions with Respect to the Time of Setting by Vicat Needle - This test has certain operational drawbacks which will work against its use in routine testing. - 2. It is believed however, that this test could be brought into control limits without too much trouble, and that in this respect it would be superior to the Gillmore test. With regard to acceptance testing, and the limits now allowed in the Gillmore test, there seems to be no reason to be greatly concerned about its reliability or precision. Table 26 Computed Control Limits for Averages (\overline{X}) and Ranges (R) for Time of Setting by Vicat Needle Time in Minutes All Tests | | | Grand Average Computed Control Limits | | | | | | | |---|--------|---|-------------------------|-------|------------|------|--------|-----| | ſ | | Grand | Average | | Computed (| | Limits | | | ļ | Cement | Average | Range | Range | Average X | | Rang | e R | | i | Number | X | $\overline{\mathbb{R}}$ | UCL | LCL | UCL | LCL | | | 1 | | | | | | | | | | | 1 | 216.9 | 13.5 | 242.3 | 191.5 | 44.1 | 0 | | | | 2 | 284.8 | 10.3 | 304.2 | 265.4 | 33.6 | 0 | | | 1 | | | | | | | | | | | Cement | Cement Number | | |---|--------------|---------------|--| | | 1 | 2 | | | Repeatability - Absolute
Repeatability - Percent of Average | 46.8
21.6 | 30.3
10.6 | | | Reproducibility - Absolute Reproducibility - Percent of Average | 72.4
33.4 | 114.9 | | ### Water Required for Flow of 108 Percent in C 109 Mortar The results of this test are shown in Table IX. The differences in the amount of water used by the several laboratories in obtaining a flow of 108 percent in Cl09 mortar appears to be larger than can be accounted for except by assuming assignable causes of variation. The only remarks of any real value that can be made are that these causes of variation should be sought for and eliminated. #### Air Content of Portland Cement The results of this test are shown in Table XI. Here again it is observed that nearly all of the laboratories are able to obtain closely concordant duplicate results but that the average of the duplicate results vary widely from laboratory to laboratory. Here again, our conclusion must be that assignable causes of variation are operating and that they could probably be found and eliminated. The amount of water used in this test was designated by the California Division of Highways. # Water Required for Flow of 88 Percent in C 185 Mortar The results of the tests are shown in Table XII. These results are somewhat similar to those obtained in the test for the amount of water required to obtain a flow of 108 on Cl09 mortar. In the case of the Cl09 mortar, the ratio of average range of all the tests to the grand average was: $$\frac{\overline{R}}{\overline{X}}$$ 100 = 13.7 and the like ratio for the results on the C185 mortar is $$\frac{\overline{R}}{\overline{X}}100 = 12.2$$ The tests were not performed in duplicate and no computations for control limits can therefore be made. ### False Set of Portland Cement ASTM Designation: C359-55T The results of these tests are shown in Table XIII. The results obtained by all of the laboratories on Cement No. 4, which is a cement that shows no sign of false set, are all practically identical. The results obtained on Cement No. 5 are not good, with the exception that all laboratories were able to demonstrate that the false set was broken up by remixing. The results obtained on Cement No. 6 are very similar to those obtained on Cement No. 5. This test as proposed is a tentative test. It does not state penetration values for deciding between a cement with false set and one without false set. From the results obtained by the laboratories at intervals of 5, 8, and 11 minutes it is apparent that the concordance between laboratories is very poor. False Set of Portland Cement Federal Specification SS-C-158c, 4.4.11 The results of these tests are shown in Table XIV. All of the results by all of the laboratories classified Cement No. 4 as not showing false set. Cement No. 5 would be classified by seven of the thirteen laboratories as showing false set. It would not be so classified by six of the laboratories. Eleven of the thirteen laboratories would classify Cement No. 6 as showing false set. These results cannot be compared with the false set results by the ASTM method, since that method has no criteria as to what does or does not constitute false set. #### False Set of Portland Cement Test Method No. Calif. 503A The results of these tests are shown in Table XV. Laboratory \mathbf{D} , did not perform these tests. In using this test procedure three of the laboratories would have considered Cement No. 4 as false setting, eleven of the twelve laboratories would have considered Cement No. 5 as showing false set and eleven of the twelve would also have considered Cement No. 6 to be in that category. From the data it would be difficult to say with any certainty, which of the methods for false set (Federal or California) is superior. ### Specific Gravity of Portland Cement The results of these tests are shown in Table XVI. It is apparent from a glance at the data that a considerable number of the results would be out of control. It is interesting to note that as long ago as 1919, W. F. Hillebrand(9) called attention to the care that is necessary in making a determination of specific gravity, to avoid an error of several points in the second place of decimals. This test is usually not one of great importance, but it is apparent that the values in the second place of decimals are not too reliable. #### Chemical Analysis of Portland Cement For Silicon Dioxide The results of these tests are shown in Table XVII. Table 27 shows the computed control limits and the laboratories and tests in control. Table 28 shows the repeatability and reproducibility of some of the results. These values were not computed for the values in control for cements No. 2 and No. 3. In the determination of SiO2, the maximum permissible variation between two results (10), presumably by the same operator is O.16. It will be observed in Table XVII that four sets of tests failed to conform to this requirement. The average variation or range between the duplicate tests is O.07. If this value is representative of what the average laboratory can do with this test, the control limits within which any individual laboratory or operator should work providing that the test method is reliable should be \overline{X} + O.13 percent for \overline{X} and from O to O.23 for ranges when subgroups of two are used in the computations. If O.07 is actually about the average range that laboratories will attain, it is possible to estimate the standard deviation of a universe of such tests. It is done by multiplying the average range by a constant depending upon the number of tests in each subgroup. For subgroups of two, the constant is $\underline{1}$ = O.8865. The table of constants can be found in reference (1). In the present case the estimated universe standard deviation of the test walld be (0.07)(0.8865)=0.062 percent. ### Conclusions with Respect to the Analysis for SiO2 - A substantial number of the co-operating laboratories are out of control in this test. - 2. Three laboratories failed in one or more tests to maintain the permissible variation between two duplicate tests. - 3. An estimate of the universe standard deviation of the test as computed from the average of 25 pairs of results as Conclusions with Respect to the Analysis for SiO₂ (Continued) #### 3. (Continued) described above is 6' = 0.062 percent. For an average SiO₂ content of say 22.00 percent, this would work out as a coefficient of variation of $\frac{0.062}{22.00}$ 100 = 0.28 percent. These values are estimates of the standard deviation of a normal universe, and are hence the estimation of the standard deviation of a test method that is in control. Table 27 Computed Control Limits for Averages (X) and Ranges (R) for Silicon Dioxide in Portland Cement All Tests | | | | 44.44. 200 | | | | |--------|---------|---------|------------|-----------|-----------|----------| | | Grand | Average | Co | omputed C | ontrol Li | mits | | Cement | Average | Range | Avera | ige X | Rang | | | Number | X | R | UCL | LCL | UCL | LCL | | 1. | 22.88 | •093 | 23.05 | 22.71 | 0.30 | 0 | | 2 | 24.73 | 0.092 | 24.90 | 24.56 | 0.30 | 0 | | 3 | 20.56 | 0.066 | 20.68 | 20.44 | 0.22 | 0 | | I | l | l | <u> </u> | <u> </u> | <u> </u> | <u> </u> | # Laboratories and Tests Within Control Limits | X Indicat | es a tes | t in Contro | <u>) l</u> | |----------------------------|-------------|-------------|------------------| | | | Cement | | | Laboratories | 1 | 2 | 3 | | A
B
C
D | X
X
X | X
X
X | X
X
X
X | | E
F
G | X
X | х | X | | H
I
J
K
L
M | X
X
X | X
X | X
X | Table 28 # Repeatability and Reproducibility of Analyses for Silicon Dioxide | All Tests | | | | |--|---------------|---------------|---------------| | | Cer | nent Nı | ımber | | | 1 1 | 2 | 3 | | Repeatability - Absolute
Repeatability - Percent of Average | | 0.223
0.90 | 0.154
0.75 | | Reproducibility - Absolute Reproducibility - Percent of Average | 0.831
3.63 | 0.746
3.02 | 0.300
1.46 | | | | | | | | | | | | Tests in Control | | | · | | Repeatability - Absolute
Repeatability - Percent of Average | 0.174
0.76 | | | | Reproducibility - Absolute
Reproducibility - Percent of Average | 0.317
1.39 | | | # Chemical
Analysis of Portland Cement for Aluminum Oxide The results of these tests are shown in Table XVIII. The maximum permissible variation between two results in the analysis for Al203 is 0.20. (10). Reference to Table XVIII indicates that this requirement has not been attained in three cases out of the thirty-nine tabulated. One laboratory was responsible for two failures. The average range of the remaining values was 0.08 percent. Assuming that this \overline{R} = 0.08 is representative of what an average laboratory can do, it is possible to estimate the standard deviation G' and V' as was done in the test for SiO₂. In this case it is (0.08)(0.8865) = 0.071 percent and V' for an average Al₂O₃ content of 4 percent would be 1.77 percent. #### Chemical Analysis of Portland Cement for Ferric Oxide The results of these tests are shown in Table XIX. The maximum permissible variation between two results in the analysis for Fe₂O₃ is O.1O. As shown in Table XIX, none of the laboratories have failed to meet this requirement. The average difference or average range of all of the values is O.O₂. The estimated 6' = (0.02)(0.8865) = 0.018 percent and the estimated V' for an average Fe203 content of 3 percent would be 0.6 percent. # Chemical Analysis of Portland Cement for Calcium Oxide The results of these tests are shown in Table XX. The maximum permissible variation between two results is 0.20. Five of the thirty-nine duplicate tests failed to meet this requirement. The average difference or range of all of the other values is 0.09. The estimated \mathcal{O} is therefore 0.08 percent and the estimated coefficient of variation for an average CaO value of say 65.00 is 0.12 percent. # Chemical Analysis of Portland Cement for Magnesium Oxide The results of these tests are shown in Table XXI. The maximum permissible variation between two results is 0.16. Three of the thirty-nine tests failed to meet this requirement. The average difference or range of all the other values is 0.04 percent. The estimated \mathcal{G} ' is therefore 0.035 percent and the estimated V' for an average MgO value of 4 percent is 0.9 percent. # Chemical Analysis of Portland Cement for Loss on Ignition The results of these tests are shown in Table XXII. The maximum permissible variation between the results is 0.10. Three of the thirty-nine tests failed to meet the requirement. The average range of the other values is 0.033 percent. The estimated standard deviation of the method (6') is therefore, 0.029 percent. # Chemical Analysis of Portland Cement for Sulfur Trioxide The results of these tests are shown in Table XXIV. The maximum permissible variation between results is 0.10. All of the tests were within this tolerance. The average range of all tests was 0.029 percent. The estimated standard deviation of the test (σ ') was 0.026 percent. Chemical Analysis of Portland Cement for Calcium Sulfate in Hydrated Portland Cement Mortar. The results of these tests are shown in Table XXV. The results of tests indicate that the individual laboratories are able to duplicate their results fairly closely, but that the results between laboratories are far from satisfactory. This confirms the results obtained from co-operative tests on this method in the past. This method is no longer standard for acceptance testing. # Conclusions with Respect to All of the Tests - 1. The foregoing series of co-operative test results affords convincing evidence that assignable causes of variation account for at least a substantial amount of the differences observed between the test results as reported by the co-operating laboratories. It is obvious that an effort should be made to locate and eliminate these causes. - 2. In order to do so it is suggested that it is first necessary for each laboratory to accumulate evidence that all or any of the tests are reliable in the hands of its own operators. - 3. If it can be shown that any particular test is not reliable in the hands of say, a majority of operators, some consideration should be given to a revision of such tests. - 4. It is suggested that criteria based on recent statistical findings should be adopted for deciding upon the reliability of the test methods, and for future co-operative tests. #### REFERENCES - 1. "ASTM Manual on Quality Control of Material," American Society for Testing Materials (1951) - 2. E. L. Grant, "Statistical Quality Control" McGraw-Hill Book Co., Inc., New York and London, (1946) - 3. "ASTM Standards on Petroleum Products and Lubricants", November, 1954, Appendix - 4. Carl A. Bennett and Normal L. Franklin, "Statistical Analysis in Chemistry and the Chemical Industry" John Wiley and Sons, Inc., New York and London (1954) - 5. W. J. Youden, "Statistical Methods for Chemists" John Wiley and Sons, Inc., New York and London (1951) - 6. J. J. Diamond and Leonard Bean "Improvements in Flame Photometric Determination of Sodium in Portland Cement" Analytical Chemistry, Vol. 25, No. 12, pp. 1825, 1830, December, 1953 - 7. William R. Eubank and Robert H. Bogue "Studies on the Flame Photometer for the Determination of Na2O and K2O in Portland Cement" National Bureau of Standards Research Paper R.P. 2019, Vol. 43 (August, 1949) - 8. E. Bright Wilson, Jr. "An Introduction to Scientific Research" McGraw-Hill Book Company, Inc., New York, (1952), page 43 - 9. W. F. Hillebrand "The Analysis of Silicate and Carbonate Rocks" Bulletin 700, U. S. Geological Survey (1919) - 10. A.S.T.M. Standards American Society for Testing Materials (1955), Part 3, page 72 Table I NORMAL CONSISTENCY of Three Portland Cements Designated 1, 2 and 3, by Thirteen Laboratories Designated A to M, According to A.S.T.M. Method Designation: C187-49 | Laboratory | Test | Се | ment Numb | er | |------------|---|--------------|--------------|--------------------------------| | Code | Number | 1 | 2 | 3 | | A | 1
2 | 24.0
24.0 | 21.6
21.6 | 24.0
24.0 | | В | 1
2 | 23.2
23.2 | 21.0
21.0 | 24.2
24.2 | | С | 1
2
1
2 | 24.8
24.8 | 22.6
22.6 | 24.6
24.6 | | Q | 1 2 | 23.5
23.5 | 21.4
21.4 | 23 * 7
23 • 7 | | Е | 1
2
1 | 23.0
23.4 | 21.2
21.2 | 23.0
23.0 | | F | 2 | 24.0
24.2 | 21.0
21.0 | 24.0
24.2 | | G | 1 2 | 24.0
24.0 | 22.0
21.6 | 23.9
23.9 | | Н | 1 2 | 25.0
25.0 | 21.2
21.2 | 24.2
24.2 | | I | 1 2 | 23.8
23.8 | 21.4
21.4 | 23.6
23.6 | | J | 1 2 | 24.0
24.0 | 21.4
21.4 | 24.4
24.4 | | K | 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 | 24.6
24.4 | 21.2
21.2 | 24.6
24.6 | | L | 1 2 | 24.6
24.4 | 21.6
21.6 | 24.5
24.5 | | М | 1
2 | 24.6
24.4 | 21.2
21.2 | 24.2
24.2 | | Average | | 24.1 | 21.4 | 24.1 | | Minimum | | 23.0 | 21.0 | 23.0 | | Maximum | | 25.0 | 22.6 | 24.6 | ## Table II ## PENETRATION OF PLUNGER C of A.S.T.M. C187-49 in Paste Made with Percentage of Water Designated by California Div. of Highways on Three Portland Cements Designated 1, 2, and 3 by Thirteen Laboratories Designated A to M | Laboratory | Test | | | ber | |------------|---|--------------------------------|----------------------------------|--| | Code | Number | 1 | 2 | 3 | | A | 1
2 | 20
22 | 25
26
29
14 | 12
13 | | В | 1 2 | 28
29 | 29
14 | 15
21 | | C | 1
2 | 12
10 | 9 | 11
10 | | D | 1
2
1
2
1
2 | 12
10
38
38 | 29
35 | 15
21
11
10
25
26
15
21
12
13
18
19
12
13
21
21
12 | | E | 1 2 | 15
20 | 20
25
21
25 | 15
21 | | F | 1 2 | 15
20
13
16 | 21
25 | 12
13 | | G | 1 2 | 14
18
7
8
24
23 | 15
17 | 18
19 | | Н | 1
2 | 7
8 | 22
18
21
20
29
27 | 13 | | I | 1
2 | 24
23 | 20 | 21 | | J | 1 2 | 15
16 | 29
27 | 12
11 | | K | 1 2 | 12 | 26
19 | 12
11 | | L | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 11
12 | 23
26 | 12
11
13
14 | | М | 1 2 | 12
15
18 | 25
22 | 14 | | Average | <u>. 1</u> | 18 | 22 | 15
10 | | Minimum | | 7 | 9 | | | Maximum | | 39 | 35 | 26 | #### Table III #### FINENESS of Portland Cement by the Turbidimeter A.S.T.M. Designation: Cl15-53 Fineness of Portland Cement by the Air Permeability Apparatus A.S.T.M. Designation: C204-55 Three Cements Designated 1, 2 and 3, by Thirteen Laboratories Designated A to M | | | | bidimete | | | Apparat | | | |--------------------------------------|----------|--|--|--|--|--|--|--| | Laboratory | Test [| Cement Number | | | Cement Number | | | | | Code | Number | 1 | 2 | 3 | | | | | | A | 1 2 | 1586 _x
1605 | 1800
1787 | 1943
1930 | 2822
2811 | 2978
2999 | 3805
3791 | | | В | 1 2 | 1556
1541 | 1754
1764 | 1775 _x
1780 ^x | 2753 _x
2742 | 2908
2950 | 3746 _x
3715 ^x | | | С | 1 2 | 1587 _x
1587 | 1864 _x
1813 | 2000 _x
1954 | 2783
2804 | 2954
2912 | 3806
3806 | | | D | 1 2 | 1455 _x
1409 ^x | 1744
1805 | 1878
1950 | 2790
2748 ^x | 2949
2922 | 3642
3661 ^x | | | E | 1 2 | 1489 _x
1514 ^x | 1774
1771 | 1894
1876 | 2731 _x
2753 ^x | 2908
2950 | 3828
3877 ^x | | | F | 1
2 | 1570
1590 | 1790
1780 | 1950 _x
1970 ^x | 2890 _x
2900 ^x | 3000 _x
3010 ^x | 3910 _x
3900 ^x | | | G | 1 2 | 1560
1542 | 1765
1776 | 1883
1870 | 2805
2794 | 2950
2950 | 3850
3850 | | | Н | 1 2 | 1618
1639 ^x | 1875 _x
1898 ^x | 1874
1857 | 2869
2879 ^x | 3054
3012 ^x | 3893
3909
^x | | | I | 1 2 | 1533
1520 | 1727
1732 | 1820 _x
1811 | 2757 _×
2757 | 2906 _x
2905 | 3750 _x
3750 | | | J | 1 2 | 1484 _x
1488 | 1686 _x
1680 ^x | 1844 _×
1855 | 2842
2852 ^x | 2974
2963 | 3911 _x
3893 ^x | | | K | 1 2 | 1575
1595 | 1800
1770 | 1910
1930 | 2802
2802 | 2950
2950 | 3779 _x
3788 | | | L | 1 2 | 1575
1564 | 1767
1737 | 1813 _x
1800 | 2880 _x
2850 | 3001
2970 | 4105 _x
4060 | | | М | 1 2 | 1575
1533 | 1590 _x
1638 | 2074 _×
2040 | 2740 _x
2735 | 2805 _x
2825 | 3645 _x
3655 | | | A 0 20 20 | <u> </u> | 1550 | 1765 | 1895 | 2796 | 2948 | 3820 | | | Average % Tests in | Control | 53.8 | 69.2 | 46.2 | 30.8 | 69.2 | 23.1 | | | Repeatabil:
Absolute
Percent** | | 47.3
3.0 | 54.4
3.1 | 72.1
3.8 | 30.1
1.07 | 60.8
2.06 | 19.8
0.52 | | | Reproducibe
Absolute
Percent | ility: | 78.9
5.1 | 70.1
4.0 | 101.6 | 39.2
1.40
dicates t | 76.7
2.6 | 170.2
4.5
of cont | | Table IV ## TIME OF SETTING of Hydraulic Cements by Gillmore Needles A.S.T.M. Designation: C266-51T Three Cements Designated 1, 2 and 3, by Thirteen Laboratories Designated A to M | | 1 | Cement Number | | | | | | | | |------------|--------|---------------|--------------|--------------|--------------|--------------|--------------|--|--| | Laboratory | Test | | | | 2 | | } | | | | Code | Number | Initial | Final | Initial | Final | Initial | Final | | | | A | 1 2 | 3:00
3:00 | 6:35
6:25 | 5:05
5:10 | 8:00
8:05 | 2:25
2:35 | 4:55
5:05 | | | | В | 1 2 | 3:55
3:50 | 6:40
6:30 | 4:05
4:00 | 8:25
8:10 | 2:00
2:10 | 3:55
4:05 | | | | C | 1 2 | 4:05
3:45 | 5:30
5:30 | 5:30
5:20 | 7:30
6:45 | 2:20
2:25 | 3:40
3:35 | | | | D | 1
2 | 4:00
3:35 | 7:00
6:50 | 4:45
4:45 | 7:30
7:45 | 3:00
2:40 | 6:00
5:25 | | | | E | 1 2 | 4:30
3:15 | 5:55
5:15 | 4:35
3:55 | 6:45
7:40 | 3:15
3:05 | 5:00
5:05 | | | | F | 1 2 | 4:10
4:20 | 6:05
6:35 | 5:40
5:30 | 8:55
8:40 | 3:05
2:55 | 5:20
5:30 | | | | G | 1 2 | 3:40
3:50 | 6:30
6:35 | 5:15
5:35 | 7:20
7:30 | 3:00
3:15 | 5:50
6:00 | | | | Н | 1
2 | 3:39
3:35 | 7:03
7:30 | 4:40
4:40 | 7:22
7:08 | 2:50
2:15 | 6:16
5:02 | | | | I | 1 2 | 5:00
5:10 | 6:40
6:05 | 5:25
5:40 | 7:15
7:30 | 2:45 | 4:10
4:3 | | | | J | 1 2 | 3:25
3:36 | 6:17
6:53 | 3:55
4:04 | 8:46
8:58 | 2:10 2:12 | 5:0.
5:0' | | | | K | 1 2 | 3:32
3:06 | 6:08
5:31 | 3:52
3:27 | 6:10
6:22 | 1:42 2:05 | 3:5
4:3 | | | | L | 1 2 | 3:50
4:00 | 5:20
5:15 | 4:40
5:05 | 6:15
6:45 | 2:40 | 3:5
3:3 | | | | М | 1 2 | 4:00
5:00 | 6:00
7:00 | 5:15
5:30 | 7:00
7:00 | 2:15
2:15 | 4:0
4:0 | | | | Average | | 3:52 | 6:18 | 4:49 | 7:31 | 2:34 | 4:4 | | | | Minimum | | 3:00 | 5:15 | 3:27 | 6:10 | 1:42 | 3:3 | | | | Maximum | | 5:10 | 7:30 | 5:40 | 8:58 | 3:15 | 6:1 | | | Table V TIME OF SETTING of Hydraulic Cement by Vicat Needle A.S.T.M. Designation: C191-52. Three Cements Designated 1, 2, and 3, by Thirteen Laboratories Designated A to M | Laboratory | Test | C | ement No. | | |--------------------|--|---|--|--| | Code | Number | 1 | 2 | 3 | | A | 1
2 | 165
160 | 295
295 | 300
305 | | В | 1
2 | 1 200 1 | 2 0 0
195 | 120
135 | | С | 1
2 | 210
220
222 | 200
195
289
277
255
255
325
335 | 139
124
120
105 | | D | 1
2 | 210
195 | 255
255 | 120
105 | | Е | 1
2
1
2
1
2
1
2
1
2
1
2 | 255
260 | 325
335 | 135
130
145
135 | | F | 1 2 | 205
210 | 265
255 | 145
135 | | G | 1 2 | 215
240 | 290
295 | 130
135 | | Н | 1 2 | 195
195 | 265
255
290
295
288
270
360
345 | 123
126 | | I | 1 2 | 250
230 | 360
345 | 123
126
145
155 | | J | 1 2 | 232
227 | 301
291 | 115
112 | | K | 1 2 | 215
218 | 257
282 | 108
127 | | L | 1 2 | 210
195
255
260
205
210
215
240
195
195
250
230
232
227
215
218
225
220
195 | 301
291
257
282
295
310
305
275 | 115
112
108
127
125
120 | | M | 1
2
1
2
1
2 | 195
270 | 305
275 | 110
110 | | Average | | 217 | 285 | 140 | | Minimum
Maximum | | 160
270 | 195
360 | 105
305 | ## Table VI #### Part 1 TENSILE STRENGTH of Hydraulic Cement Mortars A.S.T.M. Designation: C190-49. Three Cements Designated 1, 2 and 3, by Twelve Laboratories Designated A to M | Laboratory
Code | Test | , | - | Cement
2 | | | | |--------------------|--------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|---------------------------|---------------------------------| | Code | Number | 3 Days | 7 Days | 3 Days | 7 Days | 3 Days | 7 Days | | A | 1 | 265
270
270
268 | 340
355
<u>355</u>
350 | 235
240
<u>245</u>
240 | 300
300
<u>320</u>
307 | 290
325
305
307 | 385
400
<u>375</u>
387 | | | 2 | 260
265
<u>260</u>
262 | 360
360
<u>340</u>
353 | 255
245
265
267 | 320
305
310
313 | 285
315
310
303 | 385
365
385
378 | | В | 1 | 277
271
<u>268</u>
272 | 346
339
<u>328</u>
338 | 228
236
<u>236</u>
233 | 300
310
275
295 | 244
229
249x
241 | 349
348
304×
334 | | В | 2 | 274
270
<u>266</u>
270 | 348
347
340
345 | 234
238
<u>237</u>
236 | 315
302
298
305 | 238
247
230x
238 | 333
351
331x
339 | | С | 1 | 300
3 1 0
285
298 | 377
392
<u>416x</u>
395 | 236
270
237
248 | 338
313
342
331 | 331
348
325
335 | 394
404
410
403 | | | 2 | 280
313
314
302 | 364
396
<u>371</u>
377 | 253
238
<u>2111</u>
215 | 329
364
360 <u>x</u>
351 | 339
321
35h
338 | 366
347
374
362 | | D | 1 | 315
290
270
292 | 365
345
350
353 | 265
250
225
247 | 355
300
320
325 | 375
340
350x
355 | 365
455
395
405 | | ע | 2 | 325
275
295
298 | 345
360
330
345 | 265
260
<u>255x</u>
260 | 315
325
320
320 | 320
300
360
327 | 375
395
1100
390 | | | 1 | 305
295
300
300 | 410
390
<u>420x</u>
407 | 265
260
<u>2110</u>
255 | 400
370
400x
390 | 320
330
350
333 | 410
440
415x
422 | | E | 2 | 315
290
280
295 | 370
400
<u>350</u>
373 | 260
210
205
225 | 295
3140
300
312 | 350
310
305
322 | 370
385
435
397 | ## Table VI Part 2 TENSILE STRENGTH of Hydraulic Cement Mortars A.S.T.M. Designation C190-49 | Laboratory | Test | | | Cement | No. | | | |------------|--------|-----------------------------------|-----------------------------------|---|-----------------------------------|-----------------------------------|----------------------------------| | Code | Number | 3 Days | 1
7_Days | 3 Days | 7 Days | 3 Days | 7 Days | | F | 1 | 240
265
265
257 | 310
360
360
343 | 230
240
240
237 | 340
310
310
320 | 300
370
320
330 | 325
280
350x
318 | | _ | 2 | 270
305
270
282 | 335
365
<u>340</u>
347 | 225
250
250
242 | 320
310
315
315 | 370
415
430 x
405 | 425
435
385
415 | | G | 1 | 260
250
275
262 | 380
375
<u>405x</u>
387 | 245
245
255
248 | 325
305
<u>305</u>
312 | 278
292
<u>278</u>
283 | 390
410
403
401 | | u . | 2 | 250
260
235x
248 | 380
380
355
372 | 220
250
230
233 | 300
310
<u>325</u>
312 | 305
318
<u>325</u>
316 | 420
415
400
412 | | н | 1 | 200
215
<u>210x</u>
208 | 305
290
<u>290</u> x
295 | 200
200
<u>200</u> x
200 | 265
260
<u>285</u> x
270 | 285
275
<u>280</u>
280 | 340
380
<u>340</u>
353 | | •• | 2 | 235
285
275
265 | 3140
350
345
345 | 2145
225
230
233 | 295
300
<u>300</u>
297 | 325
335
<u>285</u>
315 | 380
370
<u>400</u>
383 | | I | 1 | 190
255
<u>270</u> x
228 | 370
350
<u>370</u>
363 | 205
180
<u>200x</u>
195 | 310
310
<u>275</u>
298 | 255
280
320
285 | 315
320
<u>350*</u>
328 | | * | 2 | 280
255
<u>250</u>
262 | 380
345
365
363 | 210
210
<u>210x</u>
210 | 335
345
<u>340</u>
340 | 290
255
<u>255×</u>
267 | 345
380
355
363 | | J | 1 | 256
285
<u>245</u>
262 | 386
370
<u>373</u>
376 | 225
211
<u>217</u>
218 | 315
323
270
303 | 347
277
295
306 | 360
391
330
360 | | U | 2 | 297
333
335x
322 | 354
335
337
342 | 216
23l ₄
275
2l ₄ 2 | 320
301
341
321 | 289
282
<u>340</u>
304 | 425
388
411
408 | Table VI Part 3 TENSILE STRENGTH of Hydraulic Cement Mortars A.S.T.M. Designation C190-49 | Laboratory | Test | | | Cement | | | | |---------------------------|----------|--|-----------------------------------|----------------------------------|----------------------------------|---------------------------------
----------------------------------| | Code | Number | 3 Days | l
7 Days | 3 Days | 2
7 Days | 3 Days | 7 Days | | | 1 | 305
305
305
275
295 | 350
310
360
340 | 235
245
245
245
235 | 330
310
335
325 | 320
315
310
315 | 400
380
390
390 | | L | 2 | 255
260
255 | 375
375
355
366 | 215
205
<u>220x</u>
213 | 290
315
330
311 | 295
315
310
307 | 360
415
390
388 | | | 1 | 257
297
305
290
297
325 | 360
383
<u>345</u>
362 | 270
240
<u>230</u>
247 | 363
361
<u>343x</u>
356 | 343
290
<u>293</u>
309 | 420
425
<u>430x</u>
425 | | M | 2 | 325
341
335 <u>x</u>
334 | 415
438
<u>478</u> *
444 | 258
231
<u>250</u>
246 | 350
343
<u>356x</u>
350 | 288
318
.370
325 | 460
449
<u>381x</u>
430 | | Average | <u> </u> | 276 | 362 | 235 | 320 | 311 | 381 | | Per Cent of
Tests in C | | 58.3 | 58.3 | 58.3 | 58.3 | 58.3 | 41.7 | | Repeatabili
Absolute | | 50.9 | 44.9 | 43.2 | 47.8 | 69.2 | 62.9 | | Repeatabili | tv % | 18.2 | 12,6 | 18,1 | 15,2 | 22.1 | 16.2 | | Reproducibi
Absolute* | lity- | 53.2 | 38.6 | 26.7 | 34.7 | 51.1 | 57.6 | | Reproducibi | lity % | 19.1 | 10.9 | 11.1 | 11.0 | 16.3 | 14.8 | ^{**}Based on tests in control x Indicates tests out of control Laboratory K did not make these tests. ## Table VII Part 1 TENSILE STRENGTH of Hydraulic Cement Mortars A.S.T.M. Designation: C190-49 and C305-53T. Machine Mixed | Laboratory | Test | | | Cement | t No. | | | |-------------|----------|---|--------------------------|--|--------------------------|-----------------------------------|-------------------| | Code | Number | | L | ä | 2 | 3 | | | | | 3 Days | 7 Days | 3 Days | 7 Days | 3 Days | 7 Days | | | | 315 | 395 | 245 | 320 | 350 | 430
395 | | | | 295 | 380 | 240 | 320 | [340 | 395 | | | 1 | 310 | 410 | 245 | 310 | <u>340</u> | 400 | | Δ | | 307 | 395 | 243 | 317 | 343 | 408 | | A . | | 295 | 380 | 255 | 305 | 355 | 410 | | | 2 | 290 | 370 | 235 | 305 | 345 | 410 | | | | 290 | <u> 370</u> | <u> 260</u> | 315 | 31,03 | <u> 1115 </u> | | | | 292 | 373 | 250 | 308 | 347 | 411 | | | | 313 | 410 | 211 | 326 | 282 | 435 | | | 1 | 299 | 393
<u>408</u> | 188 | 321 | 307 | 438
421 | | | - | <u> 296</u> | <u>408</u> | 195x | <u>326</u> | 288 | | | В | | 303 | 404 | 198 | 324 | 292 | 431 | | D | | 314 | 407 | 204 | 312 | 291 | 427 | | | 2 | 311 | 404 | 208 | 318 | 290 | 432
435 | | | - | 309x | गिठम | <u>196x</u> | <u>326</u> | 300
294 | 431 | | | | 311 | 405 | 203 | 319 | 321 | 431 | | <u> </u> | | 303 | 447 | 243 | 299 | 376 | 464 | | | 1 1 | 299 | 413 | 202 | 305
320 | 388x | 111.93 | | | - | 323 | <u>38Lx</u> | 234 | 308 | 362 | 444 | | C | | 308 | 415 | 226
209 | 339 | 363 | 423 | | • | | 300 | 436 | 209 | 327 | 348 | 449 | | | 2 | 322 | 402 | 250 | 320 | 333x | <u> Ilaix</u> | | | _ | 315x | 1102x | <u>228</u>
229 | 329 | 348 | 1.51 | | | | 312 | 360 | 240 | 280 | 295 | 385 | | | | 270 | 365 | 270 | 380 | 320 | 375 | | | 1 | 300
295 | 380 | 200 | 31.0x | 360 | 375
350 | | | | 288 | 368 | 237 | 333 | 325 | 370 | | D | ļ | 315 | 355 | 235 | 310 | 330 | 400 | | | | 315 | 310 | 230 | 350 | 330
325 | 460
375 | | | 2 | 295 | 350 | 230
225 | 340 | 325 | | | | | 308 | 338 | 230 | 333 | 328 | 412 | | | | 290 | 370 | 250 | 320 | 360 | 395 | | | | 305 | 380 | 220 | 325
275 | 350 | 395
420
335 | | | 1 | 300 | 370 | 245 | 275 | 350
350 <u>x</u>
353 | 1 335 | | | - | <u> </u> | 380
370
373 | 238 | 307 | $\frac{1}{353}$ | 117 | | E | | 290 | 350 | 250 | 300 | 342 | 430
405
420 | | | | 240 | 385 | 280 | 290 | 1 30U | 1 405 | | | 2 | 305
300
298
290
240
265
265 | 350
385
340
358 | 220
245
238
250
280
255x
262 | 300
290
270
287 | 345
380
375 <u>x</u>
367 | 418 | | | | 265 | 358 | 262 | 201 | 1 301 | 410 | ## Table VII Part 2 TENSILE STRENGTH of Hydraulic Cement Mortars A.S.T.M. Designation: C190-49 and C305-53T. Machine Mixed | Laboratory | Test | | | Ceme | nt No. | | | |---------------------------------------|--------|-----------------------------------|-----------------------------------|---|----------------------------------|---|--| | Code | Number | 3 Days | 7 Days | 3 Days | 7 Days | 3 Days | 7 Days | | F | 1 | 280
290
<u>260</u> *
276 | 365
375
380
373 | 220
245
240
235 | 330
330
300
320 | 335
290
<u>285</u>
303 | 370
410
<u>140</u>
407
400 | | F | 2 | 220
250
255
242 | 390
355
400
382 | 265
220
290
258 | 290
285
315
296 | 295
290
295 | 380
380
386 | | | 1 | 290
280
260
277 | 350
365
375
363 | 220
230
200
217 | 280
265
<u>320</u>
288 | 315
320
320 | 390
420
415
408 | | G | 2 | 285
270
285
280 | 375
380
<u>345</u>
367 | 215
230
235
227 | 320
345
315
327 | 315
305
308 | 420
415
425
420 | | · · · · · · · · · · · · · · · · · · · | 1 | 260
265
<u>295</u>
273 | 335
325
<u>310x</u>
326 | 205
225
<u>210</u>
213 | 350
340
<u>345×</u>
345 | 305
325
302 | 375
405
385
388 | | Н | 2 | 260
280
280
273 | 320
310
350
327 | 210
210
<u>210</u>
210 | 285
290
<u>295</u>
290 | 290
290x
284 | 350
360
345x
352 | | _ | 1 | 220
280
220x
240 | 420
345
290 <u>x</u>
352 | 250
235
200
228 | 280
310
265
285 | 285
275 x
278 | 385
380
355
373
370 | | I | 2 | 230
250
235
238 | 350
380
330
353 | 185
175
220x
193 | 305
345
320
323 |
335
290
285
303
300
295
305
325
325
320
305
320
305
305
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
308
275
275
275
275
275
275
275
275
275
275 | 360
370x
367
342 | | | 1 | 256
322 | 398
350
360 | 234
258
223
238
247
250
250 | 336
296
325
319 | 350
350
311
326 | 380
393
372 | | J | 2 | 297
277
265
285
276 | 353
326
390
356 | 247
253
250
250 | 324
359
312
332 | 330
339
329 | 403
375
405
394 | ## Table VII Part 3 TENSILE STRENGTH of Hydraulic Cement Mortars A.S.T.M. Designation: C190-49 and C305-53T. Machine Mixed | Laboratory | Test | | | Cemen | t No. | | | |--|--------|----------------------------------|---------------------------------|-----------------------------------|----------------------------------|---------------------------------|---------------------------------| | Code | Number | | | | | | } | | | | 3 Days | 7 Days | 3 Days | 7 Days | 3 Days | 7 Days | | . | 1 | 275
275
<u>315</u>
288 | 395
370
<u>380</u>
381 | 240
230
230
233 | 340
320
315
325
285 | 320
305
290
305 | 425
400
<u>400</u>
408 | | L | 2 | 245
270
250x
255
293 | 350
375
360
361 | 215
215
205
212 | 320
<u>290</u>
298 | 280
320
<u>325</u>
308 | 375
420
<u>430</u>
408 | | , | 1 | 265
297
285 | 406
426
<u>340</u>
391 | 259
263
<u>285</u> x
269 | 332
300
<u>320</u>
317 | 310
345
332
329 | 380
397
<u>460</u>
412 | | M | 2 | 280
307
297
295 | 368
428
<u>412</u>
403 | 225
238
<u>214</u>
236 | 347
375
<u>340x</u>
354 | 354
335
320
336 | 430
420
<u>447</u>
432 | | Average | A | 283 | 373 | 231 | 316 | 319 | 405 | | Per Cent of in Control | Tests | 58 <u>.</u> 3 | 66.7 | 58.3 | 75.0 | 33.3 | 67.0 | | Repeatabili | | 47.4
16.5 | 72.1
19.3 | 1,9.2
21.2 | 47.5
15.2 | 149.8
15.8 | 62.1
15.3 | | Repeatabili
Reproducibi
Absolute **
Reproducibi | lity- | 40.2
14.0 | 55.6
14.9 | 39.2
16.9 | 46.3
14.8 | 48.5
15.4 | 56.5
13.9 | ^{**} Based on tests in Control x Indicates tests out of Control Laboratory K did not make these tests. # Table VIII Part 1 COMPRESSIVE STRENGTH of Hydraulic Cement Mortars A.S.T.M. Designation: C109-54T | Laboratory | Test | | | Cement | No. | <u> </u> | | |------------|--------|--|---------------------------------------|---------------------------------------|---------------------------------------|--|---------------------------------------| | Code | Number | 3 Days | 7 Days | 3 Days | 7 Days | 3 Days | 7 Days | | | 1 | 1445
1437
<u>1442x</u>
1441 | 2172
2230
2217x
2206 | 1492
1537
1510x
1513 | 2335
2245
<u>22</u> 02x
2260 | 1897
1885
<u>1832x</u>
1871 | 2742
2670
<u>2710</u> 2
2707 | | A | 2 | 1572
1582
<u>1562x</u>
1572 | 2302
2257
<u>2266x</u>
2275 | 1570
1535
1532
1545 | 2332
2342
<u>2302x</u>
2325 | 1935
1960
1954 | 2827
2862
<u>2850</u>
2846 | | _ | 1 | 1520
1478
<u>1483x</u>
1494 | 2413
2288
<u>2363x</u>
2355 | 1420
1448
<u>1392x</u>
1420 | 2256
2438
<u>2413x</u>
2369 | 1788
<u>1758x</u>
1752 | 2708
2663
<u>2640</u>
2670 | | В | 2 | 1525
1508
<u>1501x</u>
1511 | 2381
2400
<u>2352x</u>
2378 | 1412
1430
<u>1426x</u>
1423 | 2339
2352
<u>2371x</u>
2354 | 1752
<u>1763x</u>
1751 | 2710
2648
<u>2656</u>
2672 | | _ | 1 | 1650
1680
<u>1745</u>
1692 | 2860
2856
<u>2856</u> x
2857 | 1630
1650
<u>1645</u>
1642 | 2715
2690
<u>2700×</u>
2702 | 2210
2235x
2207 | 3300
3360
3320
3327
3450 | | C | 2 | 1905
1880
<u>1935</u>
1907 | 3085
2950
<u>2900×</u>
2978 | 1720
1820
<u>1765x</u>
1768 | 2925
2825
<u>2875</u>
2875 | 2310
2395x
2373 | 3540
3585
3525 | | D. | 1 | 1730
1710
<u>1655</u>
1698 | 2875
2825
<u>2750x</u>
2817 | 1815
1860
<u>1825</u> x
1833 | 2725
2850
<u>2750</u> *
2775 | 2220
<u>2240*</u>
2203 | 3400
3375
3400
3392 | | D | 2 | 1765
1840
<u>1870x</u>
1825 | 3025
3000
<u>2875</u> x
2967 | 1645
1815
1830x
1763 | 2925
2925
3050x
2967 | 1885
1832x
1871
1967
1935
1960
1954
1710
1788
1752
1752
1752
1752
1753
1751
2175
2210
2235x
2207
2415
2310
2395x
2373
2150
2220
2240x | 3350
3450
3400
3400 | | | 1 | 1638
1668
1618
1641
1438
1528 | 2670
2695
<u>2715</u>
2693 | 1525
1558
<u>1613</u>
1565 | 2363
2428
2358
2383 | 2040
2100
2083 | 3178
3070
3203
3150 | | E | 2 | 1438
1528
1515x
1494 | 21485
21448 | 1370
1333
1383x
1362 | 2140
2285
<u>2260</u> x
2228 | 2005
2023 | 2950
3088
31.35
3058 | ## Table VIII Part 2 COMPRESSIVE STRENGTH of Hydraulic Cement Mortars A.S.T.M. Designation: C109-54T | Laboratory | Test | l | | Cement | No. | | | |--------------|--------------|--------------|----------------|------------------------------|---------------|--------------|--------------| | Code | Number | 1 | | 2 | 2 | 3 | | | | | 3 Days | 7 Days | 3 Days | 7 Days | 3 Days | 7 Days | | | | 1700 | 2700 | 1650 | 2650 | 2070 | 3200 | | | | 1700 | 2700 | 1600 | 2600 | 2170 | 3200 | | | | 1800x | <u>2650</u> | 1600 | <u>2500</u> | 2020 | 3150 | | | | 1733 | 2683 | 1617 | 2583 | 2087 | 3183 | | F | | 1800 | 2600 | 1750 | 2700 | 2185 | 3100 | | | _ ! | 1830 | 2650 | 1660 | 2600 | 2125 | 3100 | | | 2 | 1850x | <u>2650</u> | 1650 | 2550 | 2100 | 3150 | | | | 1827 | <u>2633</u> | 1687 | 2617 | 2137 | 3117 | | | | 1825 | 2650 | 1650 | 2200 | 2100 | 2950 | | | | 1825 | 2500 | 1575 | 2350 | 2025 | 3100 | | • | 1 | 1850x | <u>2500</u> | 1500 | 2150x | 2250 | 31.75 | | | | 1833 | <u>2550</u> | 1575 | 2233 | 2125 | 3075 | | G | | 1785 | 2550 | 1540 | 1975 | 2310 | 3150 | | | | 1795 | 2580 | 1520 | 2 1 50 | 2235 | 3100 | | | 2 | 1780x | <u>2585</u> | 1470x | 2300x | 2025 | 3250 | | | 1 | 1787 | 2572 | 1510 | 2142 | 2190 | <u>3167</u> | | | | 1700 | 2500 | 1650 | 2200 | 2200 | 3100 | | | | 1700 | 2600 | 1500 | 2200 | 2200 | 3050 | | | 1 1 | 1700 | 2700 | 1600 | 21100x | 2300x | 3250 | | | | 1700 | 2600 | 1583 | 2266 | 2233 | 31.33 | | H | | 1700 | 2600 | 1500 | 2050 | 1900 | 2800 | | | _ | 1700 | 2600 | 1550 | 2100 | 2150 | 2950 | | | 2 | 1700 | 2550 | 1500x | 2000x | 2000 | <u> 2800</u> | | | | 1700 | 2583 | 1516 | 2050 | 2017 | 2850 | | | | 1525 | 2425 | 1550 | 2575 | 1775 | 3100 | | | | 1525 | 245C | 1550 | 2625 | 2200 | 2875 | | | 1 | 1600x | 21,25x | 1575 | 2475 | 1825x | 2975 | | | | 1550 | 2433 | 1558 | 2558 | 1933 | 2983 | | I | <u> </u> | 1400 | 2550 | 1625 | 2650 | 1900 | 3025 | | | | 1375 | 2475 | 1500 | 2650 | 2050 | 2950 | | | 2 | 1500x | 2250x | 1550 | 2600x | 2000 | 3025 | | | | 1425 | 2425 | 1558 | 2633 | 1983 | 3000 | | | | 1582 | 2375 | 1555 | 2180 | 2055 | 3025 | | | | 1670 | 2392 | 1490 | 2220 | 2062 | 3125 | | | 1 | 1 1600 | 2h02x | 1492x
1512 | 2310x | 2012 | <u>3000</u> | | |] | 1600
1617 | 21102x
2390 | 1512 | 2237 | 2043 | 3050 | | J | | 1610 | 2575 | 1525
1555
1552
1551 | 2232 | 2015 | 3000 | | | | 1692 | 260C | 1555 | 2307 | 2125
2052 | 2975
2950 | | | 2 | 1622 | <u> 2625</u> | 1572 | 2265x | 2002 | 2975
2975 | | 1 | 1 | 1641 | 2600 | 1551 | 2268 | 2064 | 47 f | ## Table VIII Part 3 COMPRESSIVE STRENGTH of Hydraulic Cement
Mortars A.S.T.M. Designation: C109-54T | Laboratory | Test | · · · · · · · · · · · · · · · · · · · | | Cement | No . | | | | |------------------------------------|---|---------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|-------------------------------------|--| | Code | Number | l | | -2 | | 3 | | | | | | 3 Days | 7 Days | 3 Days | 7 Days | 3 Days | 7 Days | | | K | 1 | 1625
1600
<u>1575</u> x
1600 | 2525
2575
<u>2500</u>
2533 | 1700
1700
<u>1575</u>
1658 | 2575
2550
<u>2475</u>
2533 | 2050
2025
2025
2033 | 2950
3050
<u>3125</u>
3042 | | | | 2 | 1675
1675
<u>1700</u>
1683 | 2400
2475
<u>2550*</u>
2475 | 1575
1600
<u>1625</u>
1600 | 2475
2400
<u>2525</u> x
2467 | 1975
1925
1875x
1925 | 2800
2875
2700x
2792 | | | L | 1 | 1650
1752
<u>1692</u>
1698 | 2627
2577
<u>2592</u>
2599 | 1690
1747
<u>1777×</u>
1738 | 2927
2912
<u>2887x</u>
2909 | 2212
2147
2052
2137 | 3090
3240
3270
3200 | | | п | 2 | 1582
1507
<u>1557</u> x
1548 | 2712
2585
<u>2575</u>
2624 | 1510
1777
1765x
1684 | 2787
2625
2745x
2719 | 2087
2110
2135
2110 | 3175
3162
<u>3287</u>
3208 | | | М | 1 | 1813
1785
1865x
1821 | 2823
3017
<u>2978</u> x
2939 | 1795
1900
<u>1708x</u>
1801 | 2725
2565
<u>2683x</u>
2658 | 2315
2295
<u>2120x</u>
2243 | 3413
3298
3525x
3412 | | | M | 2 | 1825
1913
<u>1913x</u>
1884 | 3085
2922
3090x
3032 | 1812
1795
1828x
1812 | 2668 **
2765
2840x
2758 | 2315
2443
2250x
2336 | 2653
2910
3258x
2940 | | | Average | <u> </u> | 1666 | 2603 | 1608 | 2495 | 2074 | 3072 | | | Per Cent of | Tests | 34.6 | 42.3 | 46.2 | 19.2 | 57.7 | 53.8 | | | Repeatabili
Absolute | in Control ** Repeatability- Absolute Repeatability % | | 151.5
5.8 | 142.2 | 201.4 | 207.8 | 228.5
7.4 | | | Reproducible Absolute Reproducible | llity- | 106.0
6.3 | 156.9
6.0 | 144.6
9.1 | 310.9
12.3 | 198.2 | 245.5
7.9 | | ^{**} Based on tests in Control x Indicates tests out of Control #### Table IX WATER REQUIRED for Flow of 108 Per Cent in Cl09 Mortar, Determined by Two or More Tests and Interpolation of Data, of Three Portland Cements Designated by 1, 2, and 3, and Thirteen Laboratories Designated A to M | Laboratory | C | ement N | 0. | |---|---|---|---| | Code | 1 | 2 | 3 | | A B C D E F G H I J K L M Average Minimum Maximum | 245
245
245
245
254
257
257
257
257
257
257
257
257
257
257 | 234
229
248
2429
235
235
236
237
237
238
237
238
254
254 | 246
2346
236
236
246
246
246
245
245
261 | Table X ## AUTOCLAVE EXPANSION of Three Portland Cements Designated 1, 2 and 3, by Twelve Laboratories Designated A to M, According to A.S.T.M. Designation: C151-54 | Laboratory | Test | | | mber | |---------------------------------|---------|----------------|----------------|--------------| | Code | Number | 1 | 2 | 3 | | А | 1 2 | .025
.033 | 005
.000 | .197
.221 | | В | | .031
.024 | .004
.000 | .235
.246 | | С | 1 | .033x | 002 | .234 | | | 2 | .036x | 005 | .220 | | D | 1 2 | .016x
.020x | 020x
023x | .221
.219 | | E | 1 | .026 | 006 | .212 | | | 2 | .03 <i>5</i> | .006 | .250 | | F | 1 | .030 | .010x | .210 | | | 2 | .030 | .001x | .210 | | G | 1 | .027 | .012x | .198x | | | 2 | .029 | .008x | .190x | | Н | 1 | .020x | 017x | .233 | | | 2 | .020x | 029x | .200 | | I | 1 2 1 | .028
.024 | .002x
.009x | .214
.232 | | J | 1 | .020x | 010 | .220 | | | 2 | .020x | 010 | .230 | | L | 1 | .027 | 008 | .222 | | | 2 | .026 | 008 | .222 | | М | 1 2 | .026
.022 | 013x
020x | .240
.234 | | Average | | .026 | .005 | .221 | | % Tests in | Control | 66.7 | 50.0 | 91.7 | | Repeatability: Absolute Percent | | .012 | .015 | .042 | | | | 44.6 | 395.4 | 18.7 | | Reproducibi | llity: | .007 | .017 | .031 | | Absolute** | | 26.2 | 452.4 | 14.1 | ^{**}Based on tests in control x Indicates tests out of control ## Table XI AIR CONTENT of Three Portland Cements Designated 1, 2 and 3, by Thirteen Laboratories Designated A to L According to A.S.T.M. Designation: C185-53T | Laboratory | Test | Cem | ent No | | |-------------------------------|-------------------------------------|--|--------------------------|---------------------------------| | Code | $ exttt{Number}$ | 1. | ent No | | | A | 1
2 | 7.6
7.7
9.6
9.3
7.8
7.9 | 55003
603
5555 | 6.9
6.8
4.7 | | В | 1
2 | 9.6
9.3 | 6.0 | 4.6 | | C | 1
2 | 7.8
7.9 | 5.4
5.2 | 6.3 | | D | 1
2 | - | - | 5.6 | | E | 1
2 | 8.7 | 5.4
<u>-</u> | 7.8 | | न | 12 12 12 12 12 12 12 12 12 12 12 12 | 9.5
9.3
6.6
6.9
7.6
6.7 | 7.0
7.2
3.9
3.7 | 8.6
8.3
6.8
6.4 | | G | 1
2 | 6.6
6.9 | 3.9
3.7 | 6.8 | | H | 1 2 | 7.6
6.7 | 3.9 | 7.6 | | I | 1
2 | 10.0
10.0
8.9
9.1
8.3
8.7 | 7.0
7.8
6.3
5.9 | 7.0
7.6
8.2
8.5 | | J. | 1
2 | 8.9
9.1 | 6.3
5.9 | 1 8.77 | | K | 2 | 8.3 | _ | 8.2 | | L | 1
2 | 7.4 | 5.4
4.8 | 6.2 | | M | 2 | 6.3 | 4.4 | 7.5
8.6
6.2
4.9
5.5 | | Average
Minimum
Maximum | | 8.3
6.3
10.8 | 5.4
3.7
7.8 | 6.9
4.6
8.6 | # Table XII WATER REQUIRED for Flow of 88 Per Cent in C185 Mortar Determined by Two or More Tests and Interpolation of Data. Three Cements Designated 1, 2, and 3, and Thirteen Laboratories Designated A to M | Laboratory | C | ement No | | |-------------------------------|---|---|--| | Code | 1 | 2 | 3 | | A B C D E F G H I J K L M | 200
204
210
201
217
210
208
200
216
223
207
212
222 | 199
208
212
194
224
215
215
237
237
212
224 | 208
214
204
217
213
216
200
218
223
208
221
225 | | Average
Minimum
Maximum | 210
200
223 | 214
194
224 | 2 1 4
200
225 | ## Table XIII - Part 1 FALSE SET of Portland Cement. Three Cements Designated 4, 5, and 6, and Thirteen Laboratories Designated A to M, According to A.S.T.M. Designation: 359-55T | Laboratory
Code | Test
Number | Pe | netratio
Cem | | limeters
L | | |-------------------------------|--|---|---|--|--|---| | Oode | Hounder | Initial | 5 Min. | 8 Min. | 11 Min. | Remix | | A | 1
2 | 50
50 | 50
50
50 + | 50
50 | 50
50 | 50
50
50 | | В | 1 2 | 50
50
50+
50+
50+ | 50 +
50 + | 50+
50+
50+
50+
50+
50+
50+
50+
50+
50+ | 50+
50+
50+ | l 50 + | | C | | 50 +
50 + | | D | 1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2 | 50+
50+
50+ | 50+
50+
50+
50+
50+ | 50 +
50 + | 50+
50+
50+ | 50+
50+
50+
50
50
50
50
50
50
50 | | E | 1 2 | 50+
50+ | 1 50* | 50
49 | 47
48
50
50
50
50
50
50 | 50 + | | F | 1 2 | 50 ± 50 50 50 50 50 50 50 50 50 50 50 50 50 | 50+
50
50
50
50
50
50
50 | 50
50 | 50
50 | 50
50 | | G | 1 2 | 50
50 | 50
50 | 50
50 | 50
50 | 50
50 | | Н | 1 2 | 50
50 | 50
50 | 50
50 | 50
50 | 50 | | I | 1 2 | 50
50 | 50
50 | 50
50 | 50
50 | 50 | | J | 1 2 | 50 +
50 + | 50+
50+
50+ | 50 +
50 + | 50+
50+ | l 50 ≠ | | K | 1 2 | 50 ≠
50 + | 50+ | 50 +
50 + | 50+
50+ | 50+
50+ | | L | 1 2 | 50+
50+ | 50 +
50 + | 50 +
50+ | 50+
50+
50+
50+
50+
50+ | 50+
50+
50+
50+ | | M | 1 2 | 50+
50+
50+
50+ | 50+
50+ | 50+
50+ | 50+
50+ | | | Average
Minimum
Maximum | _ | 50 →
50
50 + | 50 +
50
50 + | 50+
49
50+ | 50 +
47
50 + | 50+
50
50+ | # Table XIII - Part 2 FALSE SET of Portland Cement. Three Cements Designated 4, 5, and 6, and Thirteen Laboratories Designated A to M, According to A.S.T.M. Designation 359-55T | Laboratory
Code | Test
Number | Pe | netratio | n in Mil
ent No. | limeters | | |-------------------------|--|--|----------------------------------|---------------------|---|--| | Joue | Mumber | Initial | 5 Min. | 8 Min. | ll Min. | Remix | | A | 1
2 | 50
50 | <u>1</u> 4
14 | 2
2 | 2
2 | 50
50
50+
50+ | | В | 1
2 | ľ 50 + | 42
47
 14
10
11 | 6
7 | 50 +
50+ | | C | 1
2
1
2
1
2 | 50+
50+
50+ | 47
32
48 | 7 | 8
5 | 50 +
50 + | | D | 1 2 | 50 +
50 + | 34
45 | 9
7 | 6
5 | 50 +
50 + | | E | 1 2 | 50 +
50 + | 14
4 | 3
1 | 1 | 50 +
50 + | | F. | 1
2
1
2
1
2
1
2
1
2
1
2
1
2 | 50+
50+
50
50
50
50
50
50+
50+ | 32
29 | 1 4 | 7
8
5
6
5
1
1
3
6 | +++++
500000000000000000000000000000000 | | G | 1 2 | 50
50 | 46
48
43
42
30
45 | 10
10 | 6
8 | 50
50 | | Н | 1
2 | 50
50 | 43
42 | 6
7 | 4356 | 50
50 | | I | 1
2 | 50
50 | 30
45 | 7 | | 50
50 | | J | 1 2 | 50 + | 50+
50+ | 6 | 1 ₄
5 | 50+
50+ | | К | 1
2 | 50* | 45
44 | 12
9 | 10
8 | 50 +
50 + | | L | 1 2 | 50+
50+
50+ | 46
46 | 12
9 | 6
5
9 | 50 +
50 + | | M | 1 2 | 50 +
50 + | 46
47
48 | 14
11 | 9 | 50 +
50 + | | Avera
Minim
Maxim | um | 50+
50
50+ | 37
4
50+ | 8
1
14 | 5
1
10 | 50+
50
50+ | ## Table XIII - Part 3 FALSE SET of Portland Cement. Three Cements Designated 4, 5, and 6, and Thirteen Laboratories Designated A to M, According to A.S.T.M. Designation: 359-55T | Laboratory
Code | Test
Number | Pe | netratio
Cem | n in Mil
ent No. | limeters
6 | | |-------------------------------|--|---|--|-----------------------------------|---|--| |) | 14.00112001 | Initial | 5 Min. | 8 Min. | ll Min. | Remix | | A | 1
2 | 50
50 | 1 2 | 1
2
32
42
8 | 0
O | 50
50
50+
50+ | | В | 1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2 | 50±
50+ | 50+
50+
19
50
50
50 | 32
42 | 0
1
8
5
6
7
6
5
4 | 50 +
50 + | | С | 1 | 50+
50+
50+
50+ | 19
50 | 16
16 | 56 | 50+
50+ | | D | 1
2 | 50 +
50 + | 50
50 | 16
7
10
3
1
5
5 | 35 | 50 +
50 + | | E | 1
2 | 50₩ | 3 | 3
1 | 1 | 50 +
50+ | | F | 1
2 | 50
50 | 39
34 | 5
5 | 3 | 50
50 | | G | 1
2 | 50
50 | 50
50 | 8
9 | 7 | 50
50 | | Н | 1
2 | 50
50 | 50
47 | 9
8
8 | | 50.
50.
50.
50.
50.
50.
50.
50. | | ī | 1
2 | 50+
50
50
50
50
50
50
50 | 39
34
50
50
50
47
49
48
50*
50* | 4
4
7 | 4
3
4
7 | 50
50 | | J | 1 2 | 50 ≠
50 + | 50 +
50 + | 9 | | 50+
50+ | | K | 1 2 | 50 +
50 + | 50 +
50
50 + | 2 3 | 7 5 | 50+
50+
50+
50+ | | L | 1 2 | 50 +
50 + | 50+ | 35
22
35
11 | 5 | 50+
50+ | | М | 1 2 | 50+
50+
50+
50+ | 50 +
50 + | 35
11 | 8 | 50+ | | Average
Minimum
Maximum | | 50+
50
50+ | 41
3
50* | 12
1
42 | 7
55
12
8
5
0
12 | 50*
50
50* | Table XIV # FALSE SET of Portland Cement Three Cements Designated 4, 5 and 6, and Thirteen Laboratories Designated A to M, According to Federal Specifications SS-C-158c, 4.4.11 | | [| Penetration in Millimeters | | | | | | |------------|---------|----------------------------|----------------|----------------|--------------|----------------|---------------| | Laboratory | Test | Cement | No. 4 | Cement | No. 5 | Cement | No. 6 | | Code | Number_ | Initial | 5 Min. | Initial | 5 Min. | Initial | 5 Min. | | A | 1
2 | 33
34 | 21
23 | 34
33 | 8
8 | 35
34 | 4 3 | | В | 1 2 | 37
34 | 24
23
27 | 26
30 | 12
9
8 | 40+
37 | 14
5
10 | | С | 1
2 | 37
33 | 27
32 | 34
33 | 7 | 33
37
36 | 3
7 | | D | , 2 | 37
36 | 32
31
28 | 33
33
36 | 7 8 | 37 | 5 | | E | 1 2 | 3 <i>5</i>
33 | 25
26 | 34
37 | 8
7 | 35
37 | 4 | | F | 1 2 | 3 <i>5</i>
33 | 28
29 | 36
33 | 15
13 | 36
33 | 11
14 | | G | 1 2 | 36
35 | 26
22 | 33
30 | 11
11 | 37
36 | 19
17 | | Н | 1 2 | 37
34 | 25
24 | 34
35 | 5
5 | 37
36 | 5
5 | | I | 1 2 | 37
33 | 23
21 | 33
34 | 6
6 | 37
37 | 8
7 | | J | 1 2 | 37
36 | 27
28 | 37
34 | 12
8 | 36
37 | 5
5 | | K | 1 2 | 36
35 | 26
24 | 35
33 | 15
16 | 36
34 | 7
9 | | L | 1 2 | 34 | 21
22 | 33
35 | 15
20 | 36
35 | 7
8 | | М | 1 2 | 37
36 | 27
26 | 36
35 | 12
13 | 37
35 | 7 | | A | | 35 | 25 | 34 | 10 | 36 | 8 | | Average | | 33 | 21 | 26 | 5 | 33 | 3 | | Minimum | | 37 | 32 | 37 | 20 | 40+ | 19_ | | Maximum | | _l | | | | | | ## Table XV # FALSE SET of Portland Cement Three Cements Designated 4, 5 and 6, and Twelve Laboratories Designated A to M According to Test Method No. Calif. 503A | T 3 | | | and Per | | | illimet | ers
ent #6 | |----------------|--|------------|------------------|------------|---------------|---------|--------------------------| | Laboratory | Test | Ceme | nt #4 | Ceme | | Ceme | | | Code | Number | | 5 Min. | | 5 Min. | T37 | 5 Min. | | ···· | | Flow | Pen. | Flow | Pen. | Flow | Pen. | | | | 202 | ~~ | 100 | P7 | 100 | <i>r</i> - | | A | 1 2 | 101 | 50 | 102 | 7 | 103 | 5
23 | | | | 104 | 50 | 106_ | 23 | 105 | | | В | 1
2 | 107 | 28 | 102 | 12 | 101 | 13 | | 1) | 2 | 109 | 26 | 105 | 10 | 106 | 15 | | С | 1 | 108 | 36 | 108 | 22 | 101 | 16 | | U | 1 2 | 107 | 36 | 108 | 19 | 110 | 13 | | T'' | | 106 | 34 | 106 | 11 | 106 | 15 | | E | 2 | 100 | 33 | 108 | 15 | 102 | 12 | | | 1 2 2 | 104 | 12 | 110 | 15
7 | 102 | 15
12
5
4
19 | | F | 2 | 104 | 10 | 110 | 5 | 101 | 4 | | | 1 1 | 104
108 | 10
34 | 103 | 16 | 109 | 19 | | G | 2 | 108 | 36 | 102 | 14
8 | 109 | 2Ó
12 | | H | 1 2 1 2 | 106 | 36
32 | 102
103 | 8 | 102 | 12 | | п | 2 | 108_ | 34 | 104 | 10
21 | 103 | 14 | | I | 1 2 | 104 | 3 <i>5</i>
31 | 104 | 21 | 104 | 12 | | <u>+</u> | 2 | 108 | 31 | 106 | 16 | 108 | 12
8 | | J | 1 2 | 103 | 24 | 106 | 11 | 104 | 8 | | Ð | 2 | 106 | 33 | 106 | 10 | 104 | 13
14
11 | | K | 1 | 109 | 36 | 104 | 11 | 105 | 14 | | $oldsymbol{V}$ | 1 2 | 103 | 33 | 104 | 10
11
8 | 101 | 11 | | <u></u> | 1 | 107 | 32 | 101 | 18 | 104 | 26 | | L | 1
2 | 109 | 34 | 102 | 18 | 102 | 26 | | | | 103 | 38+ | 105 | 28 | 106 | 28 | | M | 1 2 | 106 | 38+ | 105 | 25 | 106 | 35+ | | Average | <u> </u> | 106 | 33 | 105 | 15 | 104 | 15 | | Minimum | | 100 | 10 | 101 | 5 | 101 | 5 | | Maximum | | 109 | 50 | 110 | 28 | 110 | 35+ | ## Table XVI SPECIFIC GRAVITY of Portland Cement Three Cements Designated 1, 2, and 3, and Thirteen Laboratories Designated A to M According to A.S.T.M. Designation: C188-44 | Laboratory Code | Test | Сө | ment No. | | |-------------------------------|--|-----------------------|-----------------------|------------------------| | | Number | 1 | 2 | 3 | | A | 1
2 | 3.216
3.157 | 3.168
3.148 | 3.184
3.134
3.03 | | В | 2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1 | 3.12
3.14 | 3.148
3.14
3.14 | 3.03 | | C | 1
2 | 3.14
3.14 | 3.17
3.18
3.19 | 3.11 | | D | 1
2 | 3.16
3.14 | _ | 3.10
3.11
3.12 | | E | 1
2 | 3.15
3.17 | 3.16
3.18
3.20 | 3.12
3.09
3.12 | | F | 1
2 | 3.16
3.17 | 3.20 | 13.12 | | G | 1
2 | 3.14
3.17 | 3.182
3.16
3.13 | 3.09
3.08 | | Н | 1
2 | 3.15
3.15 | 3.13 | 3.06
3.08 | | I | 1
2 | 3.10
3.12 | 3.06
3.06 | 3.13
3.15 | | J | 1
2 | 3.15
3.15 | 3.19
3.18 | 3.11
3.11 | | K | 1 2 | 3.13
3.14 | 3.17
3.18 | 3.11 | | L | 1 2 | 3.192
3.186 | 3.176
3.176 | 3.115 | | M | 1 2 | 3.153
3.160 | 3.188
3.168 | 3.129
3.130 | | Average
Minimum
Maximum | | 3.15
3.10
3.216 | 3.16
3.06
3.20 | 3.11
3.03
3.18 | ## Table XVII CHEMICAL ANALYSIS of Portland Cement for SILICON DIOXIDE Three Cements Designated 1, 2, and 3, and Thirteen Laboratories Designated A to M According to A.S.T.M. Designation: C114-53 | Laboratory Code | Test | Ce | Cement No. | | | |-------------------------------|---|----------------------------------|--|-------------------------|--| | | Number | 1 | 2 | 3 | | | A | 1
2 | 22.72
22.72 | 24.50
24.54 | 20.54
20.58 | | | В | 1
2 | 22.72
22.98
22.96 | 24.80
24.76 | 20.66
20.58 | | | C | 1
2 | 22.96
22.84 | 24.76
24.65 | 20.62
20.64 | | | D | 1
2 | 22.86
22.76 | 24.82
24.74 | 20.60
20.52 | | | E | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 23.18
23.12 | 25.15
24.96 | 20.98
20.90 | | | F | 1
2 | 22.86 | 24.76
24.68 | 20.64
20.60 | | | G | 1
2 | 22.90
22.94 | 24.52
24.54
24.50
24.42
25.08
25.26 | 20.40
20.42
20.28 | | | Н | 1
2 | 22.64 | 24.50
24.42 | 20.38 | | | I | 1
2 | 23.16
23.56 | 25.08
25.26 | 20.88
20.76 | | | J | 1
2 | 23.16
23.56
22.90
22.78 | 24.72 | 20.60
20.66 | | | K | 1
2 | 23.04 | 24.76
24.78 | 20.50
20.60 | | | Ĺ | 1
2 | 23.00 | 24.96
25.10 | 20.84
20.94 | | | M | 1
2 | 22.25 | 24.42
24. 2 5 | 19.68
19.74 | | |
Average
Minimum
Maximum | | 22.88
22.18
23.56 | 24.73
24.25
25.26 | 20.56
19.68
20.98 | | ## Table XVIII CHEMICAL ANALYSIS of Portland Cement for ALUMINUM OXIDE Three Cements Designated 1, 2, and 3, and Thirteen Laboratories Designated A to M According to A.S.T.M. Designation: C114-53 | | Test | | | | |--------------------|---|----------------------|--|------------------------------| | Laboratory Code | Number | 1 | ent No. | 3 | | A | 1 2 | 4.38
4.38 | 2.83
2.83
2.81
2.89
2.96
2.72
3.06
2.71
2.66
2.71
2.67
2.71
2.69
2.71
2.69
2.71
2.88
2.73
2.79
2.73
2.92
3.06
3.06
3.06
3.06
3.06
3.06
3.06
3.06 | 5.73
5.53
5.38
5.34 | | В | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 4.28
4.33 | 2.81
2.87 | 5.38
5.34 | | C | 2 | 4.36
4.54 | 2.89 | 5.28
5.39
5.43 | | D | 1 2 | 4.31
4.40 | 2.72 | 5.43
5.41 | | E | 2 | 4.42
4.02 | 3.06
2.44 | 5.44
5.34 | | F | 2 | 4.28
4.31
4.13 | 2.72 | 4.97
5.08 | | G | 1 2 | 4.13
4.21
4.20 | 2.69 | 5.30 | | Н | 1 2 | 4.26 | 2.67
2.71 | 5.08
5.30
5.30
5.30 | | I | 2 | 4.12 | 2.88 | 4.92 | | J | 2 | 4.27
4.29 | 2.73 | 5.30
5.26
5.48 | | K | 1 | 4.24
4.34 | 2.87
2.73 | 5.30 | | L | 1
2 | 4.41
4.51 | 2.94 | 5.68
5.56
5.84 | | M | 5 | 4.61
4.62 | | 5.87 | | Average | 4.32 | 2.81 | 5.37 | | | Minimum
Maximum | | 4.00
4.62 | 2.81
2.44
3.23 | 4.92
5.87 | ## Table XIX CHEMICAL ANALYSIS of Portland Cement for FERRIC OXIDE Three Cements Designated 1, 2, and 3, and Thirteen Laboratories Designated A to M According to A.S.T.M. Designation: C114-53 | | Test | Ce | ment No | • | |-----------------|--|--|--|--| | Laboratory Code | Number | 1 | 2 | 3 | | A | 1 | 2.90 | 2.67 | 3.25 | | | - 4 | 2.98 | 2.71 | 3,36 | | В | 2 | 2.95 | 2.71 | 3.36 | | С | 1
2 | 2.90
2.86 | 2.65 | 3.28
3.25 | | D | 1 2 | ·2.97
2.92 | 2.72
2.70 | 3.25
3.25 | | E | 1
2 | 2.90
9.95
9.90
9.90
9.90
9.90
9.90
9.95 | 2.67
2.71
2.65
2.60
2.72
2.70
2.60
2.56
2.68
2.70 | 3.20
3.20 | | F | 2 | 2.96
2.95 | 2.68
2.70 | 3.43
3.48 | | G | 1 2 | 2.85 | 2.61
2.61 | 3.22
3.22 | | H | 1 2 | 2.85
2.85
2.82
2.82
2.88
2.87
2.85
2.88
2.90
2.81
2.91 | 2.61
2.59
2.59
2.56
2.72
2.63
2.67
2.67
2.54
2.54
2.67 | 3,36
3,36
3,28
3,25
3,25
3,25
3,25
3,25
3,25
3,25
3,25 | | I | 1 2 | 2.96 | 2.56
2.72 | 3.28
3.26 | | J | 1 2 | 2.87
2.85 | 2.63
2.61 | 3.22
3.24 | | K | 1 2 | 2.88
2.90 | 2.67
2.67 | 3.28 | | L | 1 2 | 2.81
2.81 | 2.54 | 3.16
3.16 | | M | 1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2 | 2.91
2.92 | 2.67
2.67 | 3.16
3.16
3.31
3.31 | | Average | Average | | | 3.27 | | Minimum | 2.89
2.81 | 2.64
2.54
2.72 | 3.16
3.48 | | | Maximum | | 2.98 | 2.72 | 3.48 | ## Table XX # of Portland Cement for CALCIUM OXIDE Three Cements Designated 1, 2 and 3, and Thirteen Laboratories Designated A to M According to A.S.T.M. Designation: Cl14-53 | Laboratory Test | | | Cement Number | | | | | |-----------------|--|----------------|----------------|----------------|--|--|--| | Code | Number | 1 | 2 | 3 | | | | | A | 1
2 | 65.24
64.87 | 65.96
65.82 | 62.04
61.84 | | | | | В | 1 2 | 64.85
64.79 | 65.67
65.69 | 61.79
61.56 | | | | | С | 1 2 | 64.90
65.00 | 65.80
65.70 | 62.00
62.00 | | | | | D | 1 2 | 64.78
64.88 | 65.98
65.92 | 61.60
61.75 | | | | | E | 1
2
1
2
1
2
1
2
1
2 | 64.97
65.16 | 65.92
65.92 | 62.09
62.18 | | | | | F | 1 2 | 65.30
65.20 | 65.90
65.80 | 62.20
62.00 | | | | | G | 1
2
1
2
1
2
1
2
1
2
1
2 | 65.21
65.09 | 66.13
66.03 | 62.04
61.93 | | | | | Н | 1 2 | 64.85
64.75 | 65.66
65.63 | 61.88
61.88 | | | | | I | 1
2 | 64.94
65.14 | 65.94
66.50 | 61.82
62.08 | | | | | J | 1 2 | 64.68
64.60 | 65.66
65.68 | 61.58
61.48 | | | | | K | 1 2 | 64.92
64.72 | 65.71
65.72 | 61.70
61.70 | | | | | L | 1 2 | 64.98
64.98 | 65.78
65.88 | 61.88
61.88 | | | | | M | 1 2 | 64.43
64.60 | 64.90
64.54 | 61.40
61.24 | | | | | Average | | 64.92 | 65.76 | 61.83 | | | | | Minimum | | 64.43 | 64.54 | 61.24 | | | | | Maximum | | 65.30 | 66.50 | 62.20 | | | | ## Table XXI CHEMICAL ANALYSIS of Portland Cement for MAGNESIUM OXIDE Three Cements Designated 1, 2, and 3, and Thirteen Laboratories Designated A to M According to A.S.T.M. Designation: C114-53 | | Test | Cement No. | | | |--------------------|-------------------------------|--------------------------------------|------------------------------|----------------| | Laboratory Code | Number | 1 | 2 | ო | | A | 1
2 | 1.02
1.08 | 1.19
1.19
1.05 | 4.46
4.43 | | В | 1 2 | 1.77
1.77 | 1.09 | 4.39
4.55 | | C | 2 | 1.52
1.52 | 0.87 | 4.11
4.10 | | D | 2 | 1.16
1.20 | 0.65
0.70 | 3.20
3.30 | | E | 12 12 12 12 12 12 12 12 12 12 | 1.45
1.53 | 0.86
1.11 | 3.95
3.89 | | F | 2 | 1.75
1.79 | 1.00
1.00 | 4.18
 4.20 | | G | 1 2 | 1.49
1.51 | 0.87
0.89
0.83
0.83 | 4.12
4.08 | | H | 1 2 | 1.50
1.58 | 0.83 | 4.24 | | I | 2 | 1.58
1.67
1.74
1.71 | 0.96 | 4.45 | | J | 2 | 1.71
1.67 | 0.90
0.93
0.99 | 4.25 | | K | 1 2 | 1.63
1.66 | 1.02 | 4.34
4.16 | | L | 2 | 1.67
1.63
1.66
1.51
1.57 | 0.86
0.90 | 4.24 | | M | 1 2 | 1.79
1.74 | 1.49
1.77 | 4.64 | | Average | 1.55 | 0.99 | 4.19 | | | Minimum
Maximum | | 1.55
1.02
1.79 | 0.65
1.77 | 3.20
4.70 | # Table XXII CHEMICAL ANALYSIS of Portland Cement for IGNITION LOSS Three Cements Designated 1, 2, and 3, and Thirteen Laboratories Designated A to M According to A.S.T.M. Designation: C114-53 | | Test | Ce | ment No | | |--------------------|-------------------------------|----------------------|------------------------------|--| | Laboratory Code | Number | 1 | 2 | 3 | | A | 1
2 | 1.46
1.07
0.89 | 0.73
0.75
0.59
0.54 | 1.68
1.70 | | В | 12 12 12 12 12 12 12 12 12 12 | 0.95 | 0.59
0.54 | 1.70
1.73
1.65 | | С | 1
2 | 1.00
0.99 | 0.67 | 1.80
1.80 | | D | 1
2 | 0.99
1.31
1.20 | 1.18 | 2.09 | | Ē | 1
2 | 0.96 | 0.68
0.66 | 2.09
1.75
1.76 | | F | 1 2 | 0.84 | 0.86
0.85 | 1.81
1.89 | | G | 12 | 1.05 | 0.94
0.96 | 1.81
1.89
1.98
2.03
1.78
1.82
1.83
1.81
1.87
1.88 | | H | 1
2 | 1.06
0.97
1.06 | 0.63 | 1.78
1.82 | | I | 1 2 | 1.06 | 0.70 | 1.83
1.81 | | J | 1
2 | 1.01
1.15
1.11 | 0.80
0.82 | 1.87
1.88 | | K | 1 2 | 0.99
1.06 | 0.70
0.76 | 1.79
1.84 | | L | 1 2 | 0.98
1.00 | 0.65
0.71 | 1.80
1.80 | | М | 1
2 | 1.13 | 0.95 | 1.79
1.84
1.80
1.80
2.03
2.05 | | Average | | 1.05 | 0.78 | 1.85 | | Minimum
Maximum | | 0.80
1.46 | 0.54 | 2.09 | ## Table XXIII CHEMICAL ANALYSIS of Portland Cement for INSOLUBLE RESIDUE Three Cements Designated 1, 2, and 3, and Thirteen Laboratories Designated A to M According to A.S.T.M. Designation: C114-53 | | Test | Ce | ment No | | |-------------------------------|-------------------------------|----------------------|----------------------|----------------------| | Laboratory Code | Number | 1 | 2 | 3 | | A | 1
2 | 0.27
0.27 | 0.08
0.08 | 0.16
0.15 | | В | 12 12 12 12 12 12 12 12 12 12 | 0.23
0.24 | 0.08
0.05 | 0.13
0.12 | | C | 1 2 | 0.30
0.24 | 0.05 | 0.12 | | D | 1
2 | 0.18
0.15 | 0.04 | 0.09
0.08 | | E | 1
2 | 0.15
0.24
0.20 | 0.05
0.04 | 0.10 | | F | 2 | 0.26 | 0.05 | 0.08
0.05 | | G | 5 | 0.18 | 0.05 | 0.10
0.08
0.03 | | Н | 2 | 0.14
0.16
0.28 | 0.02 | 0.05 | | I | 1
2 | 0.20 | 0.03
0.05 | 0.05
0.07
0.04 | | J | 1
2 | 0.24
0.22 | 0.04
0.08 | 0.09
0.06 | | K | 1
2 | 0.23 | 0.05 | 0.01 | | L | 1
2 | 0.23
0.27 | 0.12
0.15 | 0.03 | | M | 1
2 | 0.21
0.27 | 0.05 | 0.21
0.15 | | Average
Minimum
Maximum | | 0.23
0.14
0.30 | 0.06
0.02
0.15 | 0.09
0.01
0.21 | #### Table XXIV CHEMICAL ANALYSIS of Portland Cement for SULFUR TRIOXIDE Three Cements Designated 1, 2, and 3, and Thirteen Laboratories Designated A to M According to A.S.T.M. Designation: Cl14-53 | | Test | Ce | ment No | | |--------------------|--|----------------------|------------------------------|--------------------------------------| | Laboratory Code | Number | 1 | 2 | 3 | | A | 1 2 | 1.78
1.75 | 1.98
2.03 | 1.98
1.99 | | В | 1
2 | 1.88
1.89 | 2.13
2.12
2.11 | 1.99
2.04
2.06
2.07 | | C | 1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2 | 1.91
1.89 | 2.08 | 2.07
2.04 | | D | 1
2 | 1.91
1.88 | 2.12
2.08
2.12 | 2.04
2.09
2.03
1.98
1.92 | | E | 1
2 | 1.93
1.89 | 2.04 | 1.90 | | F | 1
2 | 1.87
1.88 |
1.97
1.98
2.00 | 1.00 | | G | 1
2 | 1.78
1.79 | 2.00
2.04
2.02 | 2.00 | | Н | 1 2 | 1.88
1.84 | 2.00 | 2.05
2.00
1.98 | | I | 1
2 | 1.91
1.85 | 1.97
2.04 | 2.00 | | J | 1
2 | 1.93
1.93 | 2.04
2.13
2.12
2.11 | 2.07 | | K | 1 2 | 1.93
1.93
1.88 | 2.12 | 2.09
2.10
2.03 | | L | 1
2. | 1.91 | 2.07 | 2.07 | | М | 1 2 | 1.91
1.91 | 2.12 | 2.03
2.04 | | Average | | 1.88 | 2.07 | 2.02 | | Minimum
Maximum | | 1.75
1.93 | 1.97
2.14 | 1.84
2.11 | ## Table XXV # CHEMICAL ANALYSIS of Portland Cement for CALCIUM SULFATE in Hydrated Portland Cement Mortar Three Cements Designated 1, 2 and 3, and Twelve Laboratories Designated A to M According to A.S.T.M. Designation: C265-54T | Laboratory | Test | C∈ | ment Numb | er | |------------|---|--------------|--------------|----------------| | Code | Number | 1 | 2 | 3 | | A | 1. 2 | 0.02 | 0.46
0.41 | 0.01
0.01 | | В | 1,
2
1
2 | 0.01
0.01 | 0.52
0.49 | 0.13
0.12 | | C | 1 2 | 0.02
0.02 | 0.51
0.53 | Trace
Trace | | D | 1
2 | 0.02 | 0.50 | 0.01 | | F | 1 2 | 0.04
0.04 | 0.43
0.50 | 0.01
0.01 | | G | 1
2 | 0.01 | 0.46
0.43 | 0.01 | | Н | 1
2 | 0.00
0.00 | 0.45
0.41 | 0.00
0.00 | | I | 1
2 | 0.09
0.08 | 0.56
0.52 | 0.02
0.06 | | J | 1 2 | 0.02 | 0.48
0.48 | 0.01
0.01 | | K | 1 2 | 0.01
0.06 | 0.50
0.69 | 0.00 | | L | 1 2 | 0.01 | 0.99
0.90 | 0.00 | | М | 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 | 0.00 | 0.44
0.45 | 0.00 | | Average | | 0.02 | 0.53 | 0.02 | | Minimum | | 0.00 | 0.41 | 0.00 | | Maximum | | 0.09 | 0.99 | 0.13 | #### Table XXVI CHEMICAL ANALYSIS of Portland Cement for SODIUM OXIDE Three Cements Designated 1, 2, and 3, and Eleven Laboratories Designated A to M According to A.S.T.M. Designation: C 228-49T | | Test | Cement No. | | | | | |--|---|------------------------------|--------------------------------|------------------------------|--|--| | Laboratory Code | Number | 1 | 2 | 3 | | | | A | 1
2 | 0.42
0.41 | 0.10
0.11 | 0.56
0.56
0.57 | | | | В | 2
1
2
1
2
1
2
1
2
1
2
1
2
1
2 | 0.40
0.40 | 0.12 x
0.12 x | 0.57 | | | | C | 1
2 | 0.42
0.40 | 0.09 x
0.08 x | 0.54 x
0.54 x | | | | E | 1
2 | 0.42
0.42 | 0.13 x
0.13 | 0.58 x
0.58 x
0.54 x | | | | G | 1
2 | 0.41
0.42 | 0.10
0.12 | 0.54 | | | | Н | 1
2 | 0.43 x
0.44 | 0.10
0.10 | 0.57
0.58 | | | | I | 1
2 | 0.43
0.42 | 0.10
0.11 | 0.58
0.57 | | | | J | 1
2 | 0.46 x
0.46 | 0.11
0.11 | 0.62 x
0.62 x | | | | K | 1 2 | 0.43
0.41 | 0.10
0.09 | 0.60 x
0.58 x | | | | Ĺ | 1
2 | 0.35 x
0.36 | 0.05 x
0.08 x | 0.58 x
0.51 x
0.54 x | | | | M | 1 2 | 0.39 x
0.40 | 0.10
0.10 | 0.53 x
0.52 x | | | | Average | | 0.41 | 0.10 | 0.56 | | | | Per Cent of Tests in
Control | | 36.4 | 36.4 | 63.6 | | | | Reproducibility-Absolute Reproducibility-Absolute | | 0.027
6.5
0.028
6.8 | 0.021
20.7
0.019
18.5 | 0.016
2.9
0.029
5.1 | | | ^{**} Based on tests in Control x Indicates tests out of Control ## Table XXVII CHEMICAL ANALYSIS of Portland Cement of POTASSIUM OXIDE Three Cements Designated 1, 2, and 3, and Eleven Laboratories Designated A to M According to A.S.T.M. Designation: C 228-49T | | Test | Cement No. | | | |--|--|--------------------------------|--------------------------------|------------------------------| | Laboratory Code | Number | 1. | 2 | 3 | | A | 1 2 | 0.20
0.20 | 0.13
0.13 x | 0.45
0.46 x | | В | 1 2 | 0.18
0.18 x | 0.10
0.10 x | 0.45 x
0.45 x | | C | 1 2 | 0.20
0.19 | 0.12
0.12 | 0.45 x
0.45 x | | E | 1 2 | 0.18 x
0.19 x | 0.11
0.12 | 0.48 | | G- | 2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1 | 0.22 | 0.14
0.12 x | 0.51
0.48 x | | Н | 1 2 | 0.21 | 0.12
0.12 | 0.49 | | I | 1 2 | 0.22 | 0.13
0.12 | 0.51
0.51 x | | J | 1 2 | 0.21 | 0.12
0.12 | 0.49 | | K | 1 2 | 0.21 | 0.13
0.12 | 0.51
0.50 × | | L | 1 2 | 0.19 | 0.11
0.12
0.11 | 0.48
0.51 x | | M | 1 2 | 0.18
0.18 x | 0.11 | 0.44 x | | Avenage | | 0.20 | 0.12 | 0.48 | | Average Per Cent of Tests | | 72.7 | 72.7 | 27.3 | | Reproducibility-Absolute *** Reproducibility-Absolute | | 0.027
13.1
0.021
10.1 | 0.015
12.6
0.017
14.6 | 0.020
4.1
0.024
4.9 | ^{**} Based on tests in Control x Indicates tests out of Control